YASKAWA

YASKAWA AC Drive A1000

IP54 Wall Mount
Quick Start Guide
Type: CIMR-AC4A口TAA
Models: 400 V Class: 18.5 to 90 kW

To properly use the product, read this manual thoroughly and retain for easy reference, inspection, and maintenance. Ensure the end user receives this manual.

YASKAWACopyright © 2012

YASKAWA Europe GmbH. All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of YASKAWA. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because YASKAWA is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, YASKAWA assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

Table of Contents

1 SAFETY INSTRUCTIONS AND GENERAL WARNINGS 4
2 MECHANICAL INSTALLATION 9
3 ELECTRICAL INSTALLATION 13
4 KEYPAD OPERATION 19
5 START UP 21
6 PARAMETER TABLE 26
7 TROUBLESHOOTING 31
8 SAFE DISABLE INPUT FUNCTION 35

1 Safety Instructions and General Warnings

1 Safety Instructions and General Warnings

YASKAWA Europe supplies component parts for use in a wide variety of industrial applications. The selection and application of YASKAWA products remain the responsibility of the equipment designer or end user. YASKAWA accepts no responsibility for the way its products are incorporated into the final system design. Under no circumstances should any YASKAWA product be incorporated into any product or design as the exclusive or sole safety control. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All products designed to incorporate a component part manufactured by YASKAWA must be supplied to the end user with appropriate warnings and instructions as to the safe use and operation of that part. Any warnings provided by YASKAWA must be promptly provided to the end user. YASKAWA offers an express warranty only as to the quality of its products in conforming to standards and specifications published in the manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. YASKAWA assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products.

Scope of Delivery

A1000 IP54 drives are prepared for wall-mounting indoors. Exposure to corrosive atmosphere is not allowed.

| A1000 Drive | Quick Start Guide | Panel Key |
| :---: | :---: | :---: | :---: |

Applicable Documentation

The following manuals are available for A1000 series drives:

A1000 Series AC Drive Technical Manual

This manual provides detailed information on parameter settings, drive functions, and MEMOBUS/Modbus specifications. Use this manual to expand drive functionality and to take advantage of higher performance features.

A1000 Series AC Drive Quick Start Guide (this book)

Read this manual first. This guide is packaged together with the product. It contains basic information required to install and wire the drive, in addition to an overview of fault diagnostics, maintenance, and parameter settings. Use the information in this book to prepare the drive for a trial run with the application and for basic operation.

Drive Model Identification

- Nameplate

A1000 IP 54 Series drives have a full name plate inside and a type code label outside (underneath the digital operator).

- General Warnings

WARNING

- Read and understand this manual before installing, operating or servicing this drive.
- All warnings, cautions, and instructions must be followed.
- All work must be performed by qualified personnel.
- The drive must be installed according to this manual and local codes.

Heed the safety messages in this manual.

The operating company is responsible for any injuries or equipment damage resulting from failure to heed the warnings in this manual.

The following conventions are used to indicate Safety messages in this manual:

WARNING

Indicates a hazardous situation, which, if not avoided, could result in death or serious injury.

CAUTION

Indicates a hazardous situation, which, if not avoided, could result in minor or moderate injury.

NOTICE

Indicates a property damage message.

Safety Warnings

WARNING

Electrical Shock Hazard

Do not attempt to modify or alter the drive in any way not explained in this manual.

YASKAWA is not responsible for the damage caused by modification of the product made by the user. Failure to comply could result in death or serious injury from operation of damaged equipment.

WARNING

Do not touch any terminals before the capacitors have fully discharged.

Failure to comply could result in death or serious injury.
Before wiring terminals, disconnect all power to the equipment. The internal capacitor remains charged even after the power supply is turned off. The charge indicator LED will extinguish when the DC bus voltage is below 50 Vdc . To prevent electric shock, wait at least five minutes after all indicators are off and measure the DC bus voltage level to confirm safe level.

Do not allow unqualified personnel to use equipment.

Failure to comply could result in death or serious injury.
Maintenance, inspection, and replacement of parts must be performed only by authorized personnel familiar with installation, adjustment, and maintenance of AC drives.

Do not change wiring, remove covers, connectors or options cards, or attempt to service the drive with power applied to the drive.
Failure to comply could result in death or serious injury. Disconnect all power to the drive and check for unsafe voltages before servicing.

Always ground the motor-side grounding terminal.
Improper equipment grounding could result in death or serious injury by contacting the motor case.
Do not perform work on the drive while wearing loose clothing, jewelry or without eye protection.
Failure to comply could result in death or serious injury.
Remove all metal objects such as watches and rings, secure loose clothing, and wear eye protection before beginning work on the drive.

Never short the output circuits of the drive.

Do not short the output circuits of the drive. Failure to comply could result in death or serious injury.
Make sure the protective earthing conductor complies with technical standards and local safety regulations. The IP54 drive has an EMC filter installed and the leakage current exceeds 3.5 mA . Therefore according to IEC 61800-5-1 automatic power supply interruption in case of discontinuity of the protective earthing conductor must be provided or a protective earthing conductor with a cross section of at least $10 \mathrm{~mm}^{2}(\mathrm{Cu})$ or $16 \mathrm{~mm}^{2}(\mathrm{Al})$ must be used.

Use appropriate equipment for residual current monitoring/detection (RCM/RCD).

This drive can cause a residual current with a DC component in the protective earthing conductor. Where a residual current operated protective or monitoring device is used for protection in case of direct or indirect contact, always use an RCM or RCD of type B according to IEC 60755.

Sudden Movement Hazard

Stay clear of the motor during rotational Auto-Tuning. The motor may start operating suddenly.
During automatic starting of equipment, the machine may start moving suddenly, which could result in death or serious injury.

System may start unexpectedly upon application of power, resulting in death or serious injury.
Clear all personnel from the drive, motor, and machine area before applying power. Secure covers, couplings, shaft keys, and machine loads before applying power to the drive.

Fire Hazard

Do not use an improper voltage source.

Failure to comply could result in death or serious injury by fire.
Verify that the rated voltage of the drive matches the voltage of the incoming power supply before applying power.

WARNING

Do not use improper combustible materials in drive installation, repair or maintenance.
Failure to comply could result in death or serious injury by fire. Attach the drive or braking resistors to metal or other noncombustible material.

Do not connect the AC power line to the output terminals of the drive.
Failure to comply could result in death or serious injury by fire as a result of drive damage from line voltage application to output terminals.

- Do not connect AC line power to output terminals U, V, and W.
- Make sure that the power supply lines are connected to main circuit input terminals R/L1, S/L2, T/L3.

Tighten all terminal screws to the specified tightening torque.
Loose electrical connections could result in death or serious injury by fire due to overheating of electrical connections.

Crush Hazard

Use a dedicated material handling system when moving and installing the drive by.
Improper lift gear may cause the drive to drop, resulting in serious injury.
Only allow qualified personnel to operate a crane or hoist to transport the drive.
Failure to comply could result in death or serious injury from falling equipment.

CAUTION
 Burn Hazard

Do not touch the heatsink or braking resistor hardware until a powered-down cooling period has elapsed.

NOTICE

Equipment Hazard

Observe proper electrostatic discharge procedures (ESD) when handling the drive and circuit boards.
Failure to comply may result in ESD damage to the drive circuitry.
Never connect or disconnect the motor from the drive while the drive is outputting voltage.
Improper equipment sequencing could result in damage to the drive.
Do not perform a withstand voltage test on any part of the unit.
Failure to comply could result in damage to the sensitive devices within the drive. Use power off resistance checks to determine short-circuits.

Do not operate damaged equipment.

Failure to comply could result in further damage to the equipment.
Do not connect or operate any equipment with visible damage or missing parts.
If a fuse is blown or equipment for residual current monitoring/detection ($\mathrm{RCM} / \mathrm{RCD}$) is tripped, check the wiring and the selection of the peripheral devices.
Contact your supplier if the cause cannot be identified after checking the above.
Do not restart the drive until 5 minutes passes and CHARGE lamp is OFF or immediately operate the peripheral devices if a fuse is blown or equipment for residual current monitoring/detection (RCM/RCD) is tripped.
Check the wiring and the selection of peripheral devices to identify the cause.
Contact your supplier before restarting the drive or the peripheral devices if the cause cannot be identified.

NOTICE

Do not use unshielded cable for control wiring.

Failure to comply may cause electrical interference resulting in poor system performance. Use shielded twisted-pair wires and ground the shield to the ground terminal of the drive.

Do not carelessly connect parts or devices to the drives braking transistor terminals.
Failure to comply could result in damage to the drive or braking circuit.
Carefully review instruction manual of the Braking Unit (CDBR) when connecting it to the drive.

Do not modify the drive circuitry.

Failure to comply could result in damage to the drive and will void warranty.
YASKAWA is not responsible for modification of the product made by the user. This product must not be modified.
Check all the wiring to ensure that all connections are correct after installing the drive and connecting other devices.
Failure to comply could result in damage to the drive.

Improper application of devices on drive output circuits can damage the drive

Do not connect unapproved LC or RC interference suppression filters, capacitors, ground fault circuits, or over voltage protection devices to the drive.

Fire Hazard

Install adequate branch circuit short circuit protection per applicable codes.

The drive is suitable for circuits capable of delivering not more than 100,000 RMS symmetrical Amperes, 480 Vac maximum (400V Class). Inadequate branch short circuit protection damage or serious injury by fire.

- Precautions for Low Voltage Directive Compliance (2006/95/EC)

This drive has been tested according to European standard EN61800-5-1, and it fully complies with the Low Voltage Directive. The following conditions must be met to maintain compliance when combining this drive with other devices:

- Do not use drives in areas with pollution higher than severity 2 and overvoltage category 3 in accordance with IEC664.
- Ground the neutral point of the main power supply for 400 V Class drives.

2 Mechanical Installation

- Upon Receipt

Perform the following tasks after receiving the drive:

- Inspect the drive for damage. If the drive appears damaged upon receipt, contact your supplier.
- Verify receipt of the correct model by checking the information on the nameplate. If you have received the wrong model, contact your supplier.

Installation Environment

For optimum performance life of the drive, install the drive in an environment that meets the conditions listed below.

Environment	Conditions
Installation Area	Indoors.
Ambient Temperature	$-10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ Drive reliability improves in environments without wide temperature fluctuations.
Humidity	95% RH or less and free of condensation
Storage Temperature	-20 to $+60^{\circ} \mathrm{C}$
Surrounding Area	Install the drive in an area free from: - oil mist and dust - metal shavings, oil, water or other foreign materials - radioactive materials - combustible materials (e.g., wood) - harmful gases and liquids - excessive vibration
- chlorides	
- direct sunlight	

Installation Orientation and Spacing

Always install the drive in an upright position. Leave space around the unit for proper cooling as shown in the figure below.

Dimensions

- Drive Dimensions

Recommended screw size for wall mounting is M10 (tightening torque 18 to 22 Nm).

Model CIMR-A \square	Dimensions (mm)							Weight (kg) <1>
	Drive size	W	H	D	X	Y	E (optional)	
4 A 0044	A	400	700	245	270	670	47	$31.3 / 34.3$
4 A 0058	B	465	750	2855	2935	720	45.5	45/48
4 A 0072	B	465	750	285.5	293.5	720	45.5	$50 / 53$
4 A 0088								$71 / 74$
4 A 0103								$71 / 74$
4 A 0139	C	553.5	950	310	425	925	65.5	$81 / 83.5$
4 A 0165								82 / 84.5

$<1>$ Weight is displayed without main switch / with main switch

- Wiring Instructions

WARNING! Never open the panel door while the power is on. Failing to do so may result in serious electric shock.

1. Open the drive with panel key. Optional mains switch has to be in OFF-position to open the panel door.

2. Install recommended cable glands for main circuit and control wiring.

Note: Before wiring up the drive, remove the sealing grommets from the access holes in the bottom of the drive. The figure below explains the purpose of each hole. Make sure the proper holes are used. Do not remove the sealing grommets from holes that will not be used.

3. Route the cables through the assigned gland and connect power supply and motor cable as shown below. Example drawing shows A1000 IP54 drive with optional mains switch.

- Cable Glands

■ Control Circuit Wiring

Drive Side Wiring Hole <1>		Recommended Cable Glands for Control (Wiska)	
Diameter (mm)	Number of Holes	Cable Gland No./Locknut No. <2>	Cable Diameter (mm)
23	2	SKV16/ MUG 16	8 to 14

[^0]Note: Main circuit wires should be multi-conductor shielded line with a continuous maximum allowable temperature of over $70^{\circ} \mathrm{C}$ (such as ÖLFLEX® CLASSIC 110/115CY and UNITRONIC® LiYCY (TP) by Lapp Kabel).

Main Circuit Wiring

Drive Side Wiring Hole Diameter (mm) <1>			Recommended Cable Glands (Wiska)		
Model CIMR-A \square	Input	Output	Input Wiring	Output Wiring	Cable Diameter
			Set Gland / Lock Nut	Set Gland / Lock Nut <2>	(mm)
4A0044	50.3	50.3	ESKV-SET 50	EMSKV-SET 50	21 to 35
4A0058	50.3	50.3	ESKV-SET 50	EMSKV-SET 50	21 to 35
4A0072	50.3	50.3	ESKV-SET 50	EMSKV-SET 50	21 to 35
4A0088	63.3	63.3	ESKV-SET 63 / SPRINT 63 reduction	EMSKV-SET 63 / SPRINT 63 reduction	28 to $38 / 34$ to 48
4A0103	63.3	63.3	ESKV-SET 63 / sprint 63 reduction	EMSKV-SET 63 / SPRINT 63 reduction	28 to $38 / 34$ to 48
4A0139	63.3	63.3	ESKV-SET 63	EMSKV-SET 63	34 to 48
4A0165	63.3	63.3	ESKV-SET 63	EMSKV-SET 63	34 to 48

$<1>$ Separate holes have been provided for input, output, and option wiring (total of 4 holes).
$<2>$ Gland for output wiring is metal for shield grounding

- Dimensions Cable Glands (Wiska)

Cable Gland for Control wiring (plastic)

Part	No. (RAL7035)	Model	TL (mm)	SW (mm)	D (PG size)	L (mm)
Body	10066404	SGV16	44	30	PG16	11
Locknut	10060674	MUG16	6	30	PG16	-

Cable Gland for Main Circuit Input (plastic) and Output Wiring (metal)

Part	No. (RAL7035)	Model <1>	TL (mm)	SW (mm)	D	L (mm)
Body (Power supply)	10066530	ESKV-SET 50	72	55	M50	14
Body (Motor cable)	10065038	EMSKV-SET 50				15
Body (Power supply)	10066531	ESKV-SET 63	78	68	M63	9
Body (Motor cable)	10065039	EMSKV-SET 63				10

$<1>$ Cable gland and locknut as set

3 Electrical Installation

The figure below shows the main and control circuit wiring.

$<1>$ Multi-function digital input S3 is used for fan monitoring by default. See Internal Cooling Fan on page 18 for details.
$<2>$ Never short terminals SP and SN as doing so will damage the drive. When changing sink/source configuration, the wiring of the fan monitor has to be changed. See Internal Cooling Fan on page 18 for details.
$<3>$ Disconnect the wire jumper between H1-HC and H2-HC when utilizing the Safe Disable input.

Wiring Specification

Main Circuit

Mains Connection

Use the fuses listed in the table below when wiring the main circuit and connect L1, L2, L3 as specified in drawing Electrical Installation on page 13.

Model CIMR-AD	L1 / L2 / L3 <1>						(1) <2>	
	Mains Fuse [Bussmann]	Applicable cable (mm^{2})	$\begin{aligned} & \text { Recommended } \\ & \text { cable }\left(\mathrm{mm}^{2}\right) \end{aligned}$	Ferrule Length (mm, max.)	Screw Size / Tightening Torque (Nm)			
4A0044	FWH-250A	16 to 25	16	15	M5 slotted	2 to 4 Nm	M8	9 to 11 Nm
4A0058								
4A0072		16 to 50			M6 slotted	2.5 to 5 Nm		
4A0088			25	25	M6	3 to 6 Nm	M10	18 to 23 Nm
4A0103		25 to 50	35					
4A0139	FWH-350A	35 to 95	50		M8	6 to 12 Nm		
4A0165	FWH-400	50 to 95	70					
4A0044-0095	FWH-250A	16 to 25	16	10	M6	4 Nm	M8	9 to 11 Nm
4A0058-0095								
4A0072-0095		16 to 50						
4A0088-0095		50 to 95	50	15	M10	22.6 Nm	M10	18 to 23 Nm
4A0103-0095								
4A0139-0095	FWH-350							
4A0165-0095	FWH-400		70					

$<1>$ Use ferrules for flexible wire power supply cable
$<2>$ Use ring cable terminals for earth cable connection at the EMC filter. Connect earth power supply earth directly to EMC filter earth terminal.

Motor Connection

Model CIMR-A \square (all types)	Applicable cable (mm^{2})	Recommended cable (mm^{2})	Drive Terminals <1> Screw Size / Tightening Torque (Nm)								
			$\mathrm{U} / \mathrm{T} 1$	$\begin{aligned} & \text { V/T2,W/T3, } \\ & ,+1,+2 \end{aligned}$		+3		1, B2		(1) <1>	
4A0044	2.5 to 25	16	M6	4 to 6 Nm	-		M5	2 to 2.5 Nm	M8	9 to 11 Nm	
4 A 0058			M8	9 to 11 Nm			M8	9 to 11 Nm			
4A0072	2.5 to 50	25									
4A0088	16 to 50				M10	18 to 23 Nm	-		M10	18 to 23 Nm	
4A0103		35									
4A0139	25 to 95	50	M10	18 to 23 Nm							
4 A 0165		70									

$<1>$ Use ring cable terminals.

Control Circuit

The control terminal board is equipped with screwless terminals. Always use wires within the specification listed below.

Wire Type	Wire size (mm ${ }^{\mathbf{2}}$)	Ferrule Length (mm)
Solid	0.2 to 1.5	-
Flexible	0.2 to 1.0	-
Flexible with ferrule (recommended)	0.25 to 0.5	8

- Main and Control Circuit Wiring

- Wiring the Main Circuit Input

Consider the following precautions for the main circuit input.

- Use fuses recommended in Main Circuit on page 14 only.
- If using a ground fault circuit breaker, make sure that it can detect both DC and high frequency current.
- If using an input switch, make sure that this switch is not operated more than once every 30 minutes.
- Use insulation caps when wiring the drive with crimp terminals. Take particular care to ensure that wiring does not touch neighboring terminals or the surrounding case.
- Use an AC reactor on the input side of the drive:
-To suppress harmonic current.
-To improve the power factor on the power supply side.
-When using an advancing capacitor switch.
-With a large capacity power supply transformer (over 600 kVA).

■ Wiring the Main Circuit Output

Consider the following precautions for the output circuit wiring.

- Do not connect any other load than a 3 phase motor to the drives output.
- Never connect a power source to the drives output.
- Never short or ground the output terminals.
- Do not use phase correction capacitors.
- If using a contactor between the drive and motor, it should never be operated when the drive is outputting a voltage. Operating while there is voltage output can cause large peak currents, thus tripping the over current detection or damage the drive.

- Ground Connection

Take the following precautions when grounding the drive.

- Never share the ground wire with other devices such as welding machines, etc.
- Always use a ground wire, that complies with electrical equipment technical standards. Keep ground wires as short as possible. Leakage current is caused by the drive. Therefore, if the distance between the ground electrode and the ground terminal is too long, potential on the ground terminal of the drive will become unstable.
- When using more than one drive, do not loop the ground wire.

- Control Circuit Wiring Precautions

Consider the following precautions for wiring the control circuits.

- Separate control circuit wiring from main circuit wiring and other high-power lines.
- Separate wiring for control circuit terminals M1-M2, M3-M4, M5-M6, MA, MB, MC (contact output) from wiring to other control circuit terminals.
- For external control power supply use a UL Listed Class 2 power supply.
- Use twisted-pair or shielded twisted-pair cables for control circuits to prevent operating faults.
- Ground the cable shields with the maximum contact area of the shield and ground.
- Cable shields should be grounded on both cable ends.
- If flexible wires with ferrules are connected they might fit tightly into the terminals. To disconnect them, grasp the wire end with a pair of pliers, release the terminal using a straight-edge screw driver, turn the wire for about 45°, and pull it gently out of the terminal. For details, refer to the Technical Manual.Use this procedure for removing the wire link between $\mathrm{HC}, \mathrm{H} 1$ and H 2 when the Safe Disable function is utilized.

Main Circuit Terminals

Terminal	Type			Function
Model CIMR-A \square	4A0044	4A0058 to 4A0072	4A0088 to 4A0165	
L1/L2/L3	Main circuit power supply input			Connects line power to the drive
U/T1, V/T2, W/T3	Drive output			Connects to the motor
B1, B2	Braking resistor		not available	Available for connecting a braking resistor or a braking resistor unit option
+2	- DC reactor connection $(+1,+2)$ (remove the shorting bar between +1 and +2) - DC power supply input (+1, -)	not available		For connection - of the drive to a DC power supply - of braking options - connection of a DC reactor
+1, -		- DC power supply input (+1, -)	- DC power supply input (+1, -) - Braking transistor connection (+3, -)	
+3	not available			
$\stackrel{\rightharpoonup}{\ominus}$	-			Grounding terminal

Control Circuit Terminals

The figure below shows the control circuit terminal arrangement. The drive is equipped with screwless terminals.

Use a straight-edge screwdriver with a blade width of $\max 2.5 \mathrm{~mm}$ and a thickness of $\max 0.6 \mathrm{~mm}$ to release the terminals

There are three DIP switches and two jumpers, S1 to S5, located on the terminal board.

S1	Terminal A2 Signal Selection	
S2	RS422/485 Termination Resistor	Off \square On
S3	Safe Disable Input Sink/Source/External Supply Selection	
S4	Terminal A3 Analog/PTC Input Selection	
S5	Terminal FM/AM Signal Selection	

Control Circuit Terminal Functions

Type	No.	Terminal Name (Function)	Function (Signal Level) Default Setting
Multi-Function Digital Inputs	S1	Multi-function input 1 (Closed: Forward run, Open: Stop)	Photocoupler $24 \mathrm{Vdc}, 8 \mathrm{~mA}$ Use the wire link between terminals SC and SN or SC and SP to select between sinking, sourcing mode, and the power supply.
	S2	Multi-function input 2 (Closed: Reverse run, Open: Stop)	
	S3	Fan Monitoring ("EF3" = fan fault). See Internal Cooling Fan on page 18 for details.	
	S4	Multi-function input 4 (Fault reset)	
	S5	Multi-function input 5 (Multi-step speed reference 1)	
	S6	Multi-function input 6 (Multi-step speed reference 2)	
	S7	Multi-function input 7 (Jog reference)	
	S8	Multi-function input 8 (External baseblock)	
	SC	Multi-function input common	-
	SN	Multi-function input 0 V	24 Vdc power supply for digital inputs, 150 mA max (if no digital input option DI-A3 is used) Never short terminals SP and SN as doing so will damage the drive
	SP	Multi-function input 24 Vdc	
Safe Disable Inputs	H1	Safe Disable input 1	$24 \mathrm{Vdc}, 8 \mathrm{~mA}$ One or both open: Drive output disabled Both closed: Normal operation Internal impedance: $3.3 \mathrm{k} \Omega$ Off time of at least 1 ms Disconnect the wire jumpers shorting terminals H1, H2, and HC to use the Safe Disable inputs. Set the S3 jumper to select between sinking, sourcing mode, and the power supply.
	H2	Safe Disable input 2	
	HC	Safe Disable function common	Safe disable function common
Analog Inputs / Pulse Train Input	RP	Multi-function pulse train input (Frequency reference)	Input frequency range: 0 to 32 kHz Signal Duty Cycle: 30 to 70\% High level: 3.5 to 13.2 Vdc , low level: 0.0 to 0.8 Vdc Input impedance: $3 \mathrm{k} \Omega$
	+V	Power supply for analog inputs	10.5 Vdc (max allowable current 20 mA)
	-V	Power supply for analog inputs	-10.5 Vdc (max allowable current 20 mA)
	A1	Multi-function analog input 1 (Frequency reference bias)	-10 to $10 \mathrm{Vdc}, 0$ to 10 Vdc (input impedance: $20 \mathrm{k} \Omega$)
	A2	Multi-function analog input 2 (Frequency reference bias)	-10 to $10 \mathrm{Vdc}, 0$ to 10 Vdc (input impedance: $20 \mathrm{k} \Omega$) 4 to $20 \mathrm{~mA}, 0$ to 20 mA (input impedance: 250Ω) Voltage or current input must be selected by DIP switch S1 and H3-09
	A3	Multi-function analog input 3 / PTC Input (Auxiliary frequency reference)	-10 to $10 \mathrm{Vdc}, 0$ to 10 Vdc (input impedance: $20 \mathrm{k} \Omega$) Use switch S4 on the control terminal board to select between analog input or PTC input. If PTC is selected, set $\mathrm{H} 3-06=\mathrm{E}$.
	AC	Frequency reference common	0 V
	E (G)	Ground for shielded lines and option cards	-
Fault Relay	MA	N.O.	$30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to $1 \mathrm{~A} ; 250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$
	MB	N.C. output	
	MC	Fault output common	
Multi-Function Digital Output	M1	Multi-function digital output (During run)	$30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to $1 \mathrm{~A} ; 250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$
	M2		
	M3	Multi-function digital output (Zero speed)	$30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to $1 \mathrm{~A} ; 250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$
	M4		
	M5	Multi-function digital output (Speed agree 1)	$30 \mathrm{Vdc}, 10 \mathrm{~mA}$ to $1 \mathrm{~A} ; 250 \mathrm{Vac}, 10 \mathrm{~mA}$ to 1 A Minimum load: $5 \mathrm{Vdc}, 10 \mathrm{~mA}$
	M6		

Type	No.	Terminal Name (Function)	Function (Signal Level) Default Setting
Monitor Output	MP	Pulse train output (Output frequency)	32 kHz (max)
	FM	Analog monitor output 1 (Output frequency)	-10 to $+10 \mathrm{Vdc}, 0$ to +10 Vdc , or 4 to 20 mA Use jumper S 5 on the control terminal board to select between voltage or current output at terminals AM and FM. Set parameters H4-07 and $\mathrm{H} 4-08$ accordingly when changing the jumper setting.
	AM	Analog monitor output 2 (Output current)	
	AC	Monitor common	0 V
	DM +	Safety monitor output	Outputs status of Safe Disable function. Closed when both Safe Disable channels are closed. Up to +48 Vdc 50 mA
	DM-	Safety monitor output common	

NOTICE: The terminals HC, H1, H2 are used for the Safe Disable function. Do not remove the wire link between HC, H1, or H2 unless the Safe Disable function is used. Refer to Safe Disable Input Function on page 35 when using this function.

NOTICE: The wiring length to the terminals $\mathrm{HC}, \mathrm{H} 1$ and H 2 should not exceed 30 m .

Internal Cooling Fan

To ensure proper air circulation inside the IP54 enclosure A1000 IP54 drives have a built-in circulation fan. This fan is monitored for proper operation by wiring to S3 digital input of the drive. If the fan does not work correctly the drive stops operation and shows an "EF3" message on the digital operator.

When the A1000 IP54 is operated with control signals other than default (Sink Mode, internal power supply), the fan monitor wiring has to be changed accordingly to following table.
After changing Sink/Source configuration the digital operator should not show "EF3", otherwise fan monitoring is not wired correctly. An "EF3" fault cannot be reset until fan monitor wiring is corrected (according to the table below).

4 Keypad Operation

- Digital Operator and Keys

The digital operator is used to program the drive, to start/stop it, and to display fault information. The LEDs indicate the drive status.

■ Keys and Functions

Key	Name	Function
F1 F2	$\begin{aligned} & \text { Function Key } \\ & \text { (F1, F2) } \end{aligned}$	The functions assigned to F1 and F2 vary depending on the menu that is currently displayed. The name of each function appears in the lower half of the display window.
Esc	ESC Key	- Returns to the previous display. - Moves the cursor one space to the left. - Pressing and holding this button will return to the Frequency Reference display.
RESET	RESET Key	- Moves the cursor to the right. - Resets the drive to clear a fault situation.
(1)RUN	RUN Key	Starts the drive in the LOCAL mode. The Run LED - is on, when the drive is operating the motor. - flashes during deceleration to stop or when the frequency reference is 0 . - flashes quickly the drive is disabled by a DI, the drive was stopped using a fast stop DI or a run command was active during power up.
Λ	Up Arrow Key	Scrolls up to display the next item, selects parameter numbers and increments setting values.
V	Down Arrow Key	Scrolls down to display the previous item, selects parameter numbers and decrements setting values.
(v) STOP	STOP Key	Stops drive operation.
$\xrightarrow[\text { ENIER }]{ }$	ENTER Key	- Enters parameter values and settings. - Selects a menu item to move between displays.
$\bigcirc \frac{10}{R E}$	LO/RE Selection Key	Switches drive control between the operator (LOCAL) and the control circuit terminals (REMOTE). The LED is on when the drive is in the LOCAL mode (operation from keypad).
ALM	ALM LED Light	On: When the drive detects a fault. Flashing: - When an alarm occurs. - When oPE is detected. - When a fault or error occurs during Auto-Tuning.

Menu Structure and Modes

The following illustration explains the operator keypad menu structure.

$<1>$ Pressing \diamond RUN will start the motor.
$<2>$ Drive cannot operate the motor.
$<3>$ Flashing characters are shown as 0.
$<4>$ X characters are shown in this manual. The LCD Operator will display the actual setting values.
$<5>$ The Frequency Reference appears after the initial display which shows the product name.
$<6>$ The information that appears on the display will vary depending on the drive.

5 Start Up

Drive Setup Procedure

The illustration below shows the basic setup procedure. Each step is explained more detailed on the following pages.

Power On

Before turning on the power supply,

- Make sure all wires are connected properly.
- Make sure no screws, loose wire ends or tools are left in the drive.
- After turning the power on, the drive mode display should appear and no fault or alarm should be displayed.

- Control Mode Selection (A1-02)

There are three control modes available. Select the control mode that best suits the application the drive will control.

Control Mode	Parameter	Main Applications
V/f Control for Induction Motors	A1-02 $=0$ (default)	- General variable speed applications, particularly useful for running multiple motors from a single drive. - When replacing a drive in which parameter settings are unknown.
V/f Control with PG Speed Feedback	A1-02 $=1$	- For general-purpose applications that do not require high dynamic response but high speed accuracy. - This mode should be used if the motor parameters are unknown and Auto-Tuning cannot be performed.
Open Loop Vector Control	A1-02 $=2$	- General variable speed applications - Applications requiring high precision, high speed control
Closed Loop Vector Control<1>	A1-02 $=3$	- For general, variable-speed applications that requiring precise speed control down to zero speed, fast torque response, or precise torque control. - A speed feedback signal from the motor is required.

Control Mode	Parameter	Main Applications
Open Loop Vector Control for $\mathbf{P M}<1>$	A1-02 $=5$	Derated torque-load applications employing permanent magnet motors (SPM, IPM) and energy savings.
Advanced Open Loop Vector Control for PM $<1>$	A1-02 $=6$	This control mode can be used to operate an IPM motor for constant torque applications.
Closed Loop Vector Control for PM $<1>$	A1-02 $=7$	- This mode can be used for high precision control of a PM motor in constant torque or variable torque applications. - A speed feedback signal is required.

$<1>$ For explanations of these control modes, refer to the Technical Manual.

Normal / Heavy Duty Selection (C6-01)

The drive supports two ratings, Normal Duty and Heavy Duty. Both have different output current ratings (refer to the catalog or the Technical Manual). Set the Duty mode in accordance with the application.

Mode	Heavy Duty Rating (HD)	Normal Duty Rating (ND)
C6-01	0	1
Application	Applications with a constant torque like extruders, conveyors and cranes. High overload capability might be needed.	Applications where the torque increases with the speed like fans or pumps. High overload tolerance is normally not needed.
Overload capability (OL2)	150% of drive rated current for 60 s	120% of drive rated current for 60 s
L3-02 Stall Prevention during Acceleration	150%	120%
L3-06 Stall Prevention during Run	150%	120%
Default carrier frequency	2 kHz	2 kHz Swing PWM

Auto-Tuning (T1- $\square \square$)

Auto-Tuning automatically sets up the motor data relevant drive parameters. Three different modes are supported.

Type	Setting	Application Conditions and Benefits	Control Mode (A1-02)			
			V/f (0)	V/f w/PG (1)	OLV (2)	CLV (3)
Rotational AutoTuning	$\mathrm{T} 1-01=0$	- Motor can be decoupled from the load and rotate freely while Auto-Tuning is performed. - Motor and load can not be decoupled but the motor load is below 30%. - Rotational Auto-Tuning gives the most accurate results, and is therefore highly recommended if possible.	N/A	N/A	YES	YES
Stationary AutoTuning 1	$\mathrm{T} 1-01=1$	- Motor and load can not be decoupled and the load is higher than 30%. - A motor test report listing motor data is not available. - Automatically calculates motor parameters needed for vector control.	N/A	N/A	YES	YES
Stationary AutoTuning 2	$\mathrm{T} 1-01=4$	- Motor and load can not be decoupled and the load is higher than 30%. - A motor test report is available. Once the no-load current and the rated slip have been entered, the drive calculates and sets all other motor-related parameters.	N/A	N/A	YES	YES
Stationary AutoTuning for Line-toLine Resistance	$\mathrm{T} 1-01=2$	- The drive is used in V/f Control and other Auto-Tuning selections not possible. - Drive and motor capacities differ. - Tunes the drive after the cable between the drive and motor has been replaced with a cable over 50 m long. Assumes Auto-Tuning has already been performed. - Should not be used for any vector control modes unless the motor cable has changed.	YES	YES	YES	YES

Type	Setting	Application Conditions and Benefits	Control Mode (A1-02)			
		V/f (0)	V/f w/PG (1)	OLV (2)	CLV (3)	
Rotational Auto- Tuning for V/f Control	T1-01 = 3	- Recommended for applications using Speed Estimation Speed Search or using the Energy Saving function in V/f Control.	Assumes motor can rotate while Auto-Tuning is executed. Increases accuracy for certain functions like torque compensation, slip compensation, Energy Saving, and Speed Search.	YES	YES	N/A

CAUTION

Do not touch the motor until the Auto-Tuning is finished.

Failure to comply may result in minor or moderate injury. Voltage is still applied to the motor during the tuning process, even thought the motor may not be rotating.

For Auto-Tuning enter the Auto-Tuning menu and perform the steps shown in the figure below. The number of name plate data to be entered depends on the selected type of Auto-Tuning. This example shows Rotational Auto-Tuning.

If Auto-Tuning can not be performed for some reason (no-load operation impossible etc.), then set up the maximum frequency and voltage in the E1- $\square \square$ parameters and enter the motor data manually into the E2- $\square \square$ parameters.

NOTICE: The Safe Disable inputs must be closed during Auto-Tuning.

- External Reference Selection and Acceleration/ Deceleration Times

■ Frequency Reference Selection (b1-01)

Set parameter b1-01 according to the frequency reference used.

b1-01	Reference source	Frequency reference input
$\mathbf{0}$	Operator keypad	Set the frequency references in the d1-Dロ parameters and use digital inputs to switch over between different reference values.
$\mathbf{1}$	Analog input	Apply the frequency reference signal to terminal A1, A2, or A3.
$\mathbf{2}$	Serial Comm.	Serial Communications using the RS422/485 port
$\mathbf{3}$	Option Card	Communications option card
$\mathbf{4}$	Pulse input	Set the frequency reference at terminal RP using a pulse train signal.

■ Run Command Selection（b1－02）

Set parameter b1－02 according to the run command used．

$\mathbf{b 1 - 0 2}$	Reference source	Run command input
$\mathbf{0}$	Operator keypad	RUN and STOP keys on the operator
$\mathbf{1}$	Multi－Function digital input	Multi－Function digital input
$\mathbf{2}$	Serial Comm．	Serial Communications using the RS422／485 port
$\mathbf{3}$	Option Card	Communications option card

Acceleration／Deceleration Times and S－Curves

There are four sets of acceleration and deceleration times which can be set in the C1－$\square \square$ parameters．The default activated accel／decel times are C1－01／02．Adjust these times to the appropriate values required by the application．If necessary S－curves can be activated in the C2－$\square \square$ parameters for softer accel／decel start and end．

Reference and Run Source
The drive has a LOCAL and a REMOTE mode．

Status	Description
LOCAL	The Run／Stop command and the frequency reference are entered at the operator keypad．
REMOTE	The Run command source entered in parameter b1－02 and the frequency reference source entered in parameter b1－01 are used．

If the drive is operated in the REMOTE mode，make sure that the correct sources for the frequency reference and run command are set in parameters b1－01／02 and that the drive is in the REMOTE mode．
The LED in the LO／RE key indicates where the Run command is input from．

LO／RE LED	
ON	Run command is issued from operator．
OFF	Run command is issued from a different source than the operator．

I／O Setup

Note：The default setting functions can be seen in the connection diagram on page 13.

Multi－Function Digital Inputs（H1－ロロ）

The function of each digital input can be assigned in the H1－0ロ parameters．

Multi－Function Digital Outputs（H2－DD）

The function of each digital output can be assigned in the $\mathrm{H} 2-\square \square$ parameters．The setting value of these parameters consist of 3 digits，where the middle and right digit set the function and the left digit sets the output characteristics（ 0 ： Output as selected；1：Inverse output）．

■ Multi－Function Analog Inputs（H3－DD）

The function of each analog input can be assigned in the H3－D parameters．Input A1 and A3 are set for -10 to +10 Vdc input．A2 is set for $4-20 \mathrm{~mA}$ input．

NOTICE：If the input signal level of input A2 is switched between voltage and current，make sure that DIP switch S1 is in the correct position and parameter H3－09 is set up correctly．

NOTICE：When using analog input A3 as PTC input，set DIP switch S4 to PTC and parameter H3－06＝E．
Multi－Function Analog Outputs（H4－口ᄆ）
Use the H4－DC parameters to set up the output value of the analog monitor outputs and to adjust the output signal levels．When changing signal levels in parameter $\mathrm{H} 4-07 / 08$ ，make sure jumper S 5 is set accordingly．

Test Run

Perform the following steps to start up the machine after all parameter settings have been done.

1. Run the motor without load and check if all input, outputs and the sequence work as desired.
2. Connect the load to the motor.
3. Run the motor with load and make sure that there is no vibrations, hunting or motor stalling occurs.

After taking the steps listed above, the drive should be ready to run the application and perform the basic functions. For special setups like PID control etc. refer to the Technical Manual.

$6 \quad$ Parameter Table

This parameter table shows the most important parameters. Default settings are bold type. Refer to the Technical Manual for a complete list of parameters.

No.	Name	Description
Initialization Parameters		
A1-01	Access Level Selection	0 : View and set A1-01 and A1-04. parameters can also be viewed. 1: User Parameters (access to a set of parameters selected by the user, A2-01 to A2-32) 2: Advanced Access (access to view and set all parameters)
A1-02	Control Method Selection	0: V/f Control 1: V/f Control with PG 2: Open Loop Vector Control 3: Closed Loop Vector Control 5: Open Loop Vector Control for PM 6: Advanced Open Loop Vector Control for PM 7: Closed Loop Vector Control for PM
A1-03	Initialize Parameters	0: No initialization 1110: User Initialize (parameter values must be stored using parameter o2-03) 2220: 2-wire initialization 3330: 3-wire initialization 5550: oPE04 error reset
Operation Mode Selection		
b1-01	Frequency Reference Selection 1	0: Digital operator 1: Analog input terminals 2: MEMOBUS/Modbus communications 3: Option PCB 4: Pulse input (terminal RP)
b1-02	Run Command Selection 1	0: Digital operator 1: Digital input terminals 2: MEMOBUS/Modbus communications 3: Option PCB
b1-03	Stopping Method Selection	0: Ramp to stop 1: Coast to stop 2: DC Injection Braking to stop 3: Coast with timer 9: Simple Positioning Stop
b1-04	Reverse Operation Selection	0: Reverse enabled. 1: Reverse disabled.
b1-14	Phase Order Selection	0: Standard 1: Switch phase order (reverses the direction of the motor)
DC Injection Braking		
b2-01	DC Injection Braking Start Frequency	Sets the frequency at which DC Injection Braking starts when "Ramp to stop" (bl-03 $=0$) is selected.
b2-02	DC Injection Braking Current	Sets the DC Injection Braking current as a percentage of the drive rated current.
b2-03	DC Injection Braking Time at Start	Sets DC Injection Braking (Zero Speed Control when in CLV/PM) time at start. Disabled when set to 0.00 seconds.
b2-04	DC Injection Braking Time at Stop	Sets DC Injection Braking time at stop.

No.	Name	Description
Acceleration/ Deceleration		
C1-01	Acceleration Time 1	Sets the time to accelerate from 0 to maximum frequency.
C1-02	Deceleration Time 1	Sets the time to decelerate from maximum frequency to 0 .
$\begin{gathered} \text { C1-03 to } \\ \text { C1-08 } \end{gathered}$	Acceleration/ Deceleration Time 2 to 4	Set the accel/decel times 2 to 4 (set like C101/02).
C2-01	S-Curve Characteristic at Accel Start	S-curve at acceleration start.
C2-02	S-Curve Characteristic at Accel End	S-curve at acceleration end.
C2-03	S-Curve Characteristic at Decel Start	S-curve at deceleration start.
C2-04	S-Curve Characteristic at Decel End	S-curve at deceleration end.
Slip Compensation		
C3-01	Slip Compensation Gain	Sets the gain for the motor slip compensation function used for motor 1 .
C3-02	Slip Compensation Primary Delay Time	Adjusts the slip compensation function delay time used for motor 1.
Torque Compensation		
C4-01	Torque Compensation Gain	Sets the gain for the automatic torque (voltage) boost function and helps to produce better starting torque. Used for motor 1 .
C4-02	Torque Compensation Primary Delay Time	Sets the torque compensation filter time.
Carrier Frequency		
C6-01	Drive Duty Selection	0: Heavy Duty (HD) for constant torque applications. 1: Normal Duty (ND) for variable torque applications.
C6-02	Carrier Frequency Selection	```1: 2.0 kHz 2: 5.0 kHz 3: 8.0 kHz 4: 10.0 kHz \(5: 12.5 \mathrm{kHz}\) 6: 15.0 kHz 7: Swing PWM1 (Audible sound 1) 8: Swing PWM2 (Audible sound 2) 9: Swing PWM3 (Audible sound 3) A: Swing PWM4 (Audible sound 4) B to E: No setting possible F: User defined (determined by C6-03 through C6-05)```
Frequency Reference		
$\begin{array}{\|c} \hline \text { d1-01 to } \\ \text { d1-16 } \end{array}$	Frequency Reference 1 to 16	Sets the frequency reference for the drive. Setting units are determined by parameter o1-03.

No.	Name	Des
d1-17	Jog Frequency Reference	Sets the Jog frequency reference. Setting units are determined by parameter o1-03.
V/f Pattern for Motor 1		
E1-	Input Voltage Setting	This parameter must be set to the power supply voltage. WARNING! Drive input voltage (not motor voltage) must be set in E1-01 for the protective features of the drive to function properly. Failure to do so may result in equipment damage and/or death or personal injury.
E1-04	Maximum Output Frequency	These parameters are only applicable when E1-03 is set to F. To set linear V/f characteristics, set the same values for E1-07 and E1-09. In this case, the setting for E1-08 will be disregarded. Ensure that the four frequencies are set according to these rules: E1-09 \leq E1-07 < E1-06 \leq E1-11 \leq E1-04 Note: Some parameters may not be available depending on the control mode. - E1-07, E1-08 and E-10 are available only in the following control modes: V/f Control, V/f with PG, Open Loop Vector. - E1-11, E1-12 and E-13 are available only in the following control modes: V/f Control, V/f with PG, Open Loop Vector, Closed Loop Vector.
E1-05	Maximum Voltage	
E1-06	Base Frequency	
E1-07	Middle Output Frequency	
E1-08	Middle Output Frequency Voltage	
E1-09	Minimum Output Frequency	
E1-10	Minimum Output Frequency Voltage	
E1-13	Base Voltage	
Motor 1 Parameters		
E2-01	Motor Rated Current	Sets the motor nameplate full load current in Amps. Automatically set during Auto-Tuning.
E2-02	Motor Rated Slip	Sets the motor rated slip. Automatically set during Auto-Tuning.
E2-03	Motor No-Load Current	Sets the no-load current for the motor. Automatically set during Auto-Tuning.
E2-04	Number of Motor Poles	Sets the number of motor poles. Automatically set during Auto-Tuning.
E2-05	Motor Line-to-Line Resistance	Sets the phase-to-phase motor resistance. Automatically set during Auto-Tuning.
E2-06	Motor Leakage Inductance	Sets the voltage drop due to motor leakage inductance as a percentage of motor rated voltage. Automatically set during Auto-Tuning.
Multi-Function Digital Inputs		
$\left\lvert\, \begin{gathered} \mathrm{H} 1-01 \text { to } \\ \mathrm{H} 1-08 \end{gathered}\right.$	Multi-Function Digital Input Terminal S1 to S8 Function Selection	Selects the function of terminals S 1 to S 8 . Setting H1-03 = 24 (Default) must not be changed. Fan monitoring function.

No.	Name	Description
Multi-Function Digital Outputs		
H2-01	Terminal M1M2 function selection	Set the function for the relay output M1M2.
H2-02	Terminal M3M4 function selection	Sets the function for the relay output M3M4.
H2-03	Terminal M5M6 function selection	Sets the function for the relay output M5M6.
H2-06	Watt Hour Output Unit Selection	Outputs a 200 ms pulse signal when the watt-hour counter increases by the units selected. 0: 0.1 kWh units 1: 1 kWh units 2: 10 kWh units 3: 100 kWh units 4: 1000 kWh units
Note: Major functions are listed at the end of the table.		
Multi-Function Analog Inputs		
H3-01	Terminal A1 Signal Level Selection	$\begin{aligned} & \mathbf{0 : ~} \mathbf{0} \text { to } \mathbf{1 0} \mathbf{V} \\ & 1:-10 \text { to } 10 \mathrm{~V} \end{aligned}$
H3-02	Terminal A1 Function Selection	Sets the function of terminal A1.
H3-03	Terminal A1 Gain Setting	Sets the level of the input value selected in $\mathrm{H} 3-02$ when 10 V is input at terminal A1.
H3-04	Terminal A1 Bias Setting	Sets the level of the input value selected in H3-02 when 0 V is input at terminal A1.
H3-05	Terminal A3 Signal Level Selection	$\begin{array}{\|l} \mathbf{0}: \mathbf{0} \text { to } \mathbf{1 0} \mathbf{V} \\ 1:-10 \text { to } 10 \mathrm{~V} \end{array}$
H3-06	Terminal A3 Function Selection	Sets the function of terminal A3.
H3-07	Terminal A3 Gain Setting	Sets the level of the input value selected in H3-06 when 10 V is input at terminal A3.
H3-08	Terminal A3 Bias Setting	Sets the level of the input value selected in H3-06 when 0 V is input at terminal A3.
H3-09	Terminal A2 Signal Level Selection	$\begin{aligned} & \hline \text { 0: } 0 \text { to } 10 \mathrm{~V} \\ & 1:-10 \text { to } 10 \mathrm{~V} \\ & \text { 2: } \mathbf{4} \text { to } \mathbf{2 0} \mathbf{~ m A} \\ & \text { 3: } 0 \text { to } 20 \mathrm{~mA} \end{aligned}$ Note: Use DIP switch S1 to set input terminal A2 for a current or a voltage input signal.
H3-10	Terminal A2 Function Selection	Sets the function of terminal A2.
H3-11	Terminal A2 Gain Setting	Sets the level of the input value selected in H3-10 when $10 \mathrm{~V}(20 \mathrm{~mA})$ is input at terminal A2.
H3-12	Terminal A2 Bias Setting	Sets the level of the input value selected in H3-10 when $0 \mathrm{~V}(0$ or 4 mA$)$ is input at terminal A2.
H3-13	Analog Input Filter Time Constant	Sets a primary delay filter time constant for terminals A1, A2, and A3. Used for noise filtering.

No．	Name	Description
H3－14	Analog Input Terminal Enable Selection	Determines which of the analog input terminals will be enabled when a digital input programmed for＂Analog input enable＂（H1－$\square \square=\mathrm{C})$ is activated． 1：Terminal A1 only 2：Terminal A2 only 3：Terminals A1 and A2 only 4：Terminal A3 only 5：Terminals A1 and A3 6：Terminals A2 and A3 7：All terminals enabled
Multi－Function Analog Inputs		
H4－01	Multi－Function Analog Output Terminal FM Monitor Selection	Selects the data to be output through multi－ function analog output terminal FM． Set the desired monitor parameter to the digits available in U $\square-\square \square$ ．For example， enter＂103＂for U1－03．
H4－02	Multi－Function Analog Output Terminal FM Gain	Sets the signal level at terminal FM that is equal to 100% of the selected monitor value．
H4－03	Multi－Function Analog Output Terminal FM Bias	Sets the signal level at terminal FM that is equal to 0% of the selected monitor value．
H4－04	Multi－Function Analog Output Terminal AM Monitor Selection	Selects the data to be output through multi－ function analog output terminal AM． Set the desired monitor parameter to the digits available in UD－पロ．For example， enter＂103＂for U1－03．
H4－05	Multi－Function Analog Output Terminal AM Gain	Sets the signal level at terminal AM that is equal to 0% of the selected monitor value．
H4－06	Multi－Function Analog Output Terminal AM Bias	Sets the bias value added to the terminal AM output signal．
H4－07	Multi－Function Analog Output Terminal FM Signal Level Selection	$\begin{aligned} & \mathbf{0}: \mathbf{0} \text { to } \mathbf{1 0} \mathrm{V} \\ & 1:-10 \text { to } 10 \mathrm{~V} \\ & \text { 2: } 4 \text { to } 20 \mathrm{~mA} \end{aligned}$
H4－08	Multi－Function Analog Output Terminal AM Signal Level Selection	$\begin{aligned} & \mathbf{0}: \mathbf{0} \text { to } \mathbf{1 0} \mathrm{V} \\ & 1:-10 \text { to } 10 \mathrm{~V} \\ & 2: 4 \text { to } 20 \mathrm{~mA} \end{aligned}$
Pulse Input Setting（Freq．）		
H6－02	Pulse Train Input Scaling	Sets the terminal RP input signal frequency that is equal to 100% of the value selected in H6－01．
H6－03	Pulse Train Input Gain	Sets the level of the value selected in H6－01 when a frequency with the value set in H6－ 02 is input．
H6－04	Pulse Train Input Bias	Sets the level of the value selected in H6－01 when 0 Hz is input．
Pulse Output Setting		
H6－06	Pulse Train Monitor Selection	Select the pulse train monitor output function（value of the \square－$\square \square$ part of UD－ロロ）． Example：To select U5－01，set 501 ．

No．	Name	Description
H6－07	Pulse Train Monitor Scaling	Sets the terminal MP output signal frequency when the monitor value is 100% ． To have the pulse train monitor output equal the output frequency，set H6－06 to 102 and H6－07 to 0 ．
Motor Protection		
L1－01	Motor Overload Protection Selection	0：Disabled 1：General purpose motor（standard fan cooled） 2：Drive dedicated motor with a speed range of $1: 10$ 3：Vector motor with a speed range of 1：100 4：PM motor with variable torque 5：PM motor with constant torque control 6：General purpose motor $(50 \mathrm{~Hz})$ The drive may not be able to provide protection when multiple motors are used， even if overload is enabled in L1－01．Set L1－01 to 0 and install separate thermal relay to each motor．
L1－02	Motor Overload Protection Time	Sets the motor thermal overload protection （oL1）time．
Stall Prevention		
L3－01	Stall Prevention Selection during Acceleration	0：Disabled． 1：General purpose．Acceleration is paused as long as the current is above the L3－02 setting． 2：Intelligent．Accelerate in the shortest possible time without exceeding the L3－02 level． Note：Setting 2 is not available when using OLV／PM．
L3－02	Stall Prevention Level during Acceleration	Used when L3－01＝ 1 or 2.100% is equal to the drive rated current．
L3－04	Stall Prevention Selection during Deceleration	0 ：Disabled．Deceleration at the active deceleration rate．An ov fault may occur． 1：General purpose．Deceleration is paused when the DC bus voltage exceeds the Stall Prevention level． 2：Intelligent．Decelerate as fast as possible while avoiding ov faults． 3：Stall Prevention with braking resistor． Stall Prevention during deceleration is enabled in coordination with dynamic braking． 4：Overexcitation Deceleration．Decelerates while increasing the motor flux． 5：Overexcitation Deceleration 2．Adjust the deceleration rate according to the DC bus voltage． 6：Enabled．Decelerates adjusting the deceleration rate according to the output current and the DC bus voltage．

No.	Name	Description
L3-05	Stall Prevention Selection during Run	0: Disabled. Drive runs at a set frequency. A heavy load may cause speed loss. 1: Decel time 1. Uses the deceleration time set to C1-02 while Stall Prevention is performed. 2: Decel time 2. Uses the deceleration time set to C1-04 while Stall Prevention is performed.
L3-06	Stall Prevention Level during Run	Enabled when L3-05 is set to 1 or 2. 100\% is equal to the drive rated current.
Induction Motor Auto-Tuning		
T1-01	Auto-Tuning Mode Selection	0: Rotational Auto-Tuning 1: Stationary Auto-Tuning 1 2: Stationary Auto-Tuning for Line-to-Line Resistance 3: Rotational Auto-Tuning for V/f Control (necessary for Energy Savings and Speed Estimation Speed Search) 4: Stationary Auto-Tuning 2 8: Inertia Tuning (perform Rotational AutoTuning prior to Inertia Tuning) 9: ASR Gain Tuning (perform Rotational Auto-Tuning prior to ASR Gain AutoTuning)
T1-02	Motor Rated Power	Sets the motor rated power as specified on the motor nameplate.
T1-03	Motor Rated Voltage	Sets the motor rated voltage as specified on the motor nameplate.
T1-04	Motor Rated Current	Sets the motor rated current as specified on the motor nameplate.
T1-05	Motor Base Frequency	Sets the rated frequency of the motor as specified on the motor nameplate.
T1-06	Number of Motor Poles	Sets the number of motor poles as specified on the motor nameplate.
T1-07	Motor Base Speed	Sets the rated speed of the motor as specified on the motor nameplate.
T1-08	PG Number of Pulses Per Revolution	Set the number of pulses per revolution for the PG being used (pulse generator or encoder).
T1-09	Motor No- Load Current (Stationary Auto-Tuning)	Sets the no-load current for the motor. After setting the motor capacity to T1-02 and the motor rated current to T1-04, this parameter will automatically display the noload current for a standard 4 pole YASKAWA motor. Enter the no-load current as indicated on the motor test report.
T1-10	Motor Rated Slip (Stationary Auto-Tuning)	Sets the motor rated slip. After setting the motor capacity to T1-02, this parameter will automatically display the motor slip for a standard 4 pole YASKAWA motor. Enter the motor slip as indicated on the motor test report.
T1-11	Motor Iron Loss	Sets the iron loss for determining the Energy Saving coefficient. The value is set to E2-10 (motor iron loss) set when the power is cycled. If T1-02 is changed, a default value appropriate for the motor capacity that was entered will appear.

Monitor	Description
U1-01	Frequency Reference (Hz)
U1-02	Output Frequency (Hz)
U1-03	Output Current (A)
U1-05	Motor Speed (Hz)
U1-06	Output Voltage Reference (Vac)
U1-07	DC Bus Voltage (Vdc)
U1-08	Output Power (kW)
U1-09	Torque Reference (\% of motor rated torque)
U1-10	Displays the input terminal status.
U1-11	Displays the output terminal status. U1-11=00000000
U1-12	Verifies the drive operation status. U1-12=00000000
U1-13	Terminal A1 Input Level
U1-14	Terminal A2 Input Level
U1-15	Terminal A3 Input Level
U1-16	Output Frequency after Soft Starter
U1-18	oPE Fault Parameter
U1-24	Input Pulse Monitor
Fault Trace	
U2-01	Current Fault
U2-02	Previous Fault
U2-03	Frequency Reference at Previous Fault
U2-04	Output Frequency at Previous Fault

6 Parameter Table

Monitor	Description
U2-05	Output Current at Previous Fault
U2-06	Motor Speed at Previous Fault
U2-07	Output Voltage at Previous Fault
U2-08	DC Bus Voltage at Previous Fault
U2-09	Output Power at Previous Fault
U2-10	Torque Reference at Previous Fault
U2-11	Input Terminal Status at Previous Fault
U2-12	Output Terminal Status at Previous Fault
U2-13	Drive Operation Status at Previous Fault
U2-14	Cumulative Operation Time at Previous Fault
U2-15	Soft Starter Speed Reference at Previous Fault
U2-16	Motor q-Axis Current at Previous Fault
U2-17	Motor d-Axis Current at Previous Fault
U2-20	Heatsink Temperature at Previous Fault
Fault History	
U3-01 to U3-04	First to 4th Most Recent Fault
U3-05 to U3-10	5th to 10th Most Recent Fault
U3-11 to U3-14	Cumulative Operation Time at 1st to 4th Most Recent Fault
U3-15 to U3-20	Cumulative Operation Time at 5th to 10th Most Recent Fault
NOTE: The CPFOllowing faults are not recorded in the error log. CP5 to 03, Uv1, and Uv2	

DI/DO Sel. Description

Digital Input Function Selections

3	Multi-step speed reference 1
4	Multi-step speed reference 2
5	Multi-step speed reference 3
6	Jog reference selection (higher priority than multi-step speed reference)
7	Accel/decel time selection 1
F	Through mode (Set when a terminal is not used)
14	Fault reset (Reset when turned ON)
20 to 2F	External fault; Input mode: N.O. contact / N.C. contact, Detection mode: Normal/during operation

Digital Output Function Selections

Digital Output Function Selections	
0	During Run (ON: run command is ON or voltage is being output)
1	Zero Speed
2	Speed Agree 1
6	Drive Ready
E	Fault
F	Through mode
10	Minor fault (Alarm) (ON: Alarm displayed)

7 Troubleshooting

- General Fault and Alarms

Faults and alarms indicate problems in the drive or in the machine.
An alarm is indicated by a code on the data display and the flashing ALM LED. The drive output is not necessarily switched off.

A fault is indicated by a code on the data display and the ALM LED is on. The drive output is always switched off immediately and the motor coast to stop.

To remove an alarm or reset a fault, trace the cause, remove it and reset the drive by pushing the Reset key on the operator or cycling the power supply.

This lists up the most important alarms and faults only. Please refer to the Technical Manual for a complete list.

Digital Operator	AL	FLT	Cause	Corrective Action
Base Block bb	O		The software base block function is assigned to one of the digital inputs and the input is off. The drive does not accept Run commands.	- Check the digital inputs function selection. - Check the upper controller sequence.
Control Fault CF		0	The torque limit was reached during deceleration for longer than 3 s . when in Open Loop Vector control - The load inertia is too big. - The torque limit is too low. - The motor parameters are wrong.	- Check the load. - Set the torque limit to the most appropriate setting (L7-01 through L7-04). - Check the motor parameters.
Control Circuit Fault CPF02 to CPF24		O	There is a problem in the drive's control circuit.	- Cycle the drive power supply. - Initialize the drive. - Replace the drive if the fault occurs again.
$\begin{aligned} & \text { Control Circuit } \\ & \text { Fault } \\ & \text { CPF25 } \end{aligned}$		0	There is no terminal board connected to the control board.	- Check if the terminal board is installed properly. - Uninstall and Reapply the terminal board. - Change the drive.
Cannot Reset CrST	O		Fault reset was input when a Run command was active.	Turn off the Run command and reset the drive.
Option External Fault EF0	O	O	An external fault was tripped by the upper controller via an option card.	- Remove the fault cause, reset the fault and restart the drive. - Check the upper controller program.
External Fault EF	O		A forward and reverse command were input simultaneously for longer than 500 ms . This alarm stops a running motor.	- Check the sequence and make sure that the forward and reverse input are not set at the same time.
Fan Fault EF3	O		A1000 IP54 enclosure built-in fan does not work properly.	- Check if connector CN2 (fan) is plugged in correctly. - Check if the fan (at the drives top) is running properly. - Check if the wiring S3/SP/SN is correct according to used control logic (Sink/Source/Internal Supply)
External Faults EF1 to EF8	O	O	- An external fault was triggered by an external device via one of the digital inputs S1 to S8. - The digital inputs are set up incorrectly.	- Find out why the device tripped the EF. Remove the cause and reset the fault. - Check the functions assigned to the digital inputs.
Ground Fault GF		O	- Ground leakage current has exceeded 50% of the drives rated output current. - Cable or motor insulation is broken. - Excessive stray capacitance at drive output.	- Check the output wiring and the motor for short circuits or broken insulation. Replace any broken parts. - Reduce the carrier frequency.
Safe Disable Hbb	O		Both Safe Disable inputs are open. The drive output is safely disabled and the motor can not be started.	- Check why the upper controller's safety device disabled the drive. Remove the cause and restart. - Check the wiring. - If the Safe Disable function is not utilized for the ISO13849-1, Category 3 PLd, and IEC61508, SIL2 or for disabling the drive, the terminals $\mathrm{HC}, \mathrm{H} 1, \mathrm{H} 2$ must be linked.

Digital Operator	AL	FLT	Cause	Corrective Action
Safe Disable Fault HbbF	O		Drive output is disabled while only one of the Safe Disable inputs is open. (normally both input signals H1 and H2 should be open) - One channel is internally broken and does not switch off, even if the external signal is removed. - Only one channel is switched off by the upper controller.	- Check the wiring from the upper controller and make sure that both signals are set correctly by the controller. - If the signals are set correctly and the alarm does not disappear, replace the drive.
Output Phase Loss PF		O	Output cable is disconnected or the motor winding is damaged. Loose wires at the drive output. Motor is too small (less than 5% of drive current).	- Check the motor wiring. - Make sure all terminal screws in the drive and motor are properly tightened. - Check the motor and drive capacity.
Overcurrent oC		O	Short circuit or ground fault on the drive output side The load is too heavy. The accel./decel. times are too short. Wrong motor data or V/f pattern settings. A magnetic contactor was switched at the output.	- Check the output wiring and the motor for short circuits or broken insulation. Replace the broken parts. - Check the machine for damages (gears, etc.) and repair any broken parts. - Check the drive parameter settings. - Check the output contactor sequence.
Heatsink Overheat oH or oH1	O	O	Surrounding temperature is too high. The cooling fan has stopped. The heatsink is dirty. The airflow to the heatsink is restricted.	- Check the surrounding temperature and install cooling devices if necessary. - Check the drive cooling fan. - Clean the heatsink. - Check the airflow around the heatsink.
Motor Overload oL1		O	The motor load is too heavy. The motor is operated at low speed with heavy load. Cycle times of accel./ decel. are too short. Incorrect motor rated current has been set.	- Reduce the motor load. - Use a motor with external cooling and set the correct motor in parameter L1-01 - Check the sequence. - Check the rated current setting.
Drive Overload oL2		O	The load is too heavy. The drive capacity is too small. Too much torque at low speed.	- Check the load. - Make sure that the drive is big enough to handle the load. - The overload capability is reduced at low speeds. Reduce the load or increase the drive size.
DC Overvoltage ov	O	O	DC bus voltage rose too high. The deceleration time is too short. Stall prevention is disabled. Braking chopper / resistor broken. Unstable motor control in OLV. Too high input voltage.	- Increase the deceleration time. - Enable stall prevention by parameter L3-04. - Make sure the braking resistor and braking chopper are working correctly. - Check motor parameter settings and adjust torque and slip compensation as needed. - Make sure that the power supply voltage meets the drives specifications.
Input Phase Loss LF		\bigcirc	Input voltage drop or phase imbalance. One of the input phase is lost. Loose wires at the drive input.	- Check the power supply. - Make sure that all cables are properly fixed to the correct terminals.
Braking Transistor Fault rr		O	The internal braking transistor is broken.	- Cycle the power supply. - Replace the drive if the fault reoccurs.
Thermistor Disconnect THo	O	O	The motor thermistor is not connected properly.	Check the wiring for the thermistor.
DC Undervoltage Uv1	O	O	The voltage in the DC bus fell below the undervoltage detection level (L2-05). The power supply failed or one input phase has been lost. The power supply is too weak.	- Check the power supply. - Make sure, that the power supply is strong enough.
Controller Undervoltage Uv2		O	The drives controller power supply voltage is too low.	- Cycle power to the drive. Check if the fault reoccurs. - Replace the drive if the fault continues to occur.
DC Charge Circuit Fault Uv3		\bigcirc	The charge circuit for the DC bus is broken.	- Cycle power to the drive. Check if the fault reoccurs. - Replace the drive if the fault reoccurs.

Operator Programing Errors

An Operator Programming Error (oPE) occurs when an inapplicable parameter is set or an individual parameter setting is inappropriate. When an oPE error is displayed, press the ENTER button to display U1-18 (oPE fault constant). This monitor will display the parameter that is causing the oPE error.

Digital Operator	Cause	Corrective Action
oPE01	Drive capacity and value set to o2-04 do not match.	Correct the value set to 02-04.
oPE02	Parameters were set outside the allowable setting range.	Set parameters to the proper values.
oPE03	A contradictory setting is assigned to multi-function contact inputs H1-01 through to $\mathrm{H} 1-08$. - The same function is assigned to two inputs. (this excludes "External fault" and "Not used") - Input functions which require the setting of other input functions were set alone. - Input functions that are not allowed to be used simultaneously have been set.	- Fix any incorrect settings. - Refer to the Technical Manual for more details.
oPE05	- The run command source (b1-02) or frequency reference source (b1-01) is set to 3 but no option card is installed. - The frequency reference source is set to pulse input but H6-01 is not 0 .	- Install the required option card. - Correct the values set to b1-01 and b1-02.
oPE07	Settings to multi-function analog inputs H3-02 and H3-10 and PID functions conflict. - H3-02 and H3-10 are set to the same value. (this excludes settings 0 and F) - PID functions have been assigned to both analog inputs and the pulse input at the same time.	- Fix any incorrect setting. - Refer to the Technical Manual for more details.
oPE08	A function has been set that cannot be used in the control mode selected.(might appear after control mode change)	- Fix any incorrect setting. - Refer to the Technical Manual for more details.
oPE10	The V/f pattern setting is incorrect.	- Check the V/f pattern settings. - Refer to the Technical Manual for more details.
oPE18	One of the following setting errors has occurred while Online Tuning is enabled in OLV (A1-02 $=2$): - E2-02 has been set below 30% of the original default value - E2-06 has been set below 50% of the original default value - $\mathrm{E} 2-03=0$	Make sure E2-02, E2-03, and E2-06 are set the correct values.

- Auto-Tuning Errors

Digital Operator	Cause	Corrective Action
Er-01	Motor data fault The input motor data are not valid. (e.g. the base frequency and base speed do not fit).	Re-enter the data and repeat Auto-Tuning.
Er-02	Minor Fault - The wiring is faulty. - The load is too heavy.	- Check the wiring. - Check the load. Always perform Auto-Tuning with the load uncoupled from the motor.
Er-03	The STOP button was pressed and Auto-Tuning was canceled.	Repeat the Auto-Tuning.

7 Troubleshooting

Digital Operator	Cause	Corrective Action
Er-09	Acceleration error The motor did not accelerate for the specified acceleration time.	- Increase the acceleration time C1-01. - Check the torque limits L7-01 and L7-02.
Er-11	Motor speed fault. The torque reference was too high.	- Increase the acceleration time (C1-01). - If possible, disconnect the load.
Er-12	Current detection error - One or all output phases are lost. - Current is either too low or exceeds the drives rating. - The current sensors are faulty.	- Check the wiring. - Make sure, that the drive rating fits to the motor. - Check the load. (Auto-Tuning should have been performed without the load connected.) - Replace the drive.
Er-13	Leakage Inductance Error Drive was unable to complete tuning for leakage inductance within 300 s .	- Check all wiring and correct any mistakes. - Double check the motor rated current value that was entered to T1-04 for Auto-Tuning. - Check the motor rated current value written on the motor nameplate and enter the correct value.
End1	Excessive V/f Setting - The torque reference exceeded 20% during Auto-Tuning. - The calculated no-load current is above 80% of the motor rated current.	- Check the V/f pattern setting. - Perform Auto-Tuning without the load connected. - Check the input data and repeat Auto-Tuning.
End2	Motor iron-core saturation alarm - Calculated core saturation values out of range. - Incorrect data was entered.	- Check the input data. - Check the motor wiring. - Perform Auto-Tuning without load connected.
End3	Rated current alarm	Check the input data and repeat tuning.
End4	Adjusted Slip Calculation Error The slip that was calculated is outside the allowable range.	- Make sure the data entered for Auto-Tuning is correct. - Execute Rotational Auto-Tuning instead. If not possible, try Stationary Auto-Tuning 2.
End5	Resistance Tuning Error The resistance value that was calculated is outside the allowable range.	- Double check the data that was entered for the Auto-Tuning process. - Check the motor and motor cable connection for faults.
End6	Leakage Inductance Alarm The leakage inductance value that was calculated is outside the allowable range.	Double check the data that was entered for the Auto-Tuning process.
End7	No-Load Current Alarm - The entered no-load current value was outside the allowable range. - Auto-Tuning results were less than 5% of the motor rated current.	- Check and correct faulty motor wiring. - Double check the data that was entered for the Auto-Tuning process.

8 Safe Disable Input Function

Specifications

Inputs / Outputs	Two Safe Disable inputs and one EDM output according to ISO13849-1 Cat. 3 PLd, IEC61508 SIL2.	
Operation Time		Time from input open to drive output stop is less than 1 ms.
Failure Probability	Demand Rate Low	PFD $=5.15 \mathrm{E}^{-5}$
	Demand Rate High or Continuous	PFH $=1.2 \mathrm{E}^{-9}$
Performance Level		The Safe Disable feature satisfies all requirements of performance level d (PLd) as defined by ISO13849-1 (this includes DC from EDM).

Abstract

Precautions DANGER! Improper use of the Safe Disable function can result in serious injury or even death. Make sure the whole system or machinery that the Safe Disable function is used in complies with safety requirements. When implementing the Safe Disable function into the safety system of a machine, a thorough risk assessment for the whole system has to be carried out to assure it complies with relevant safety norms (e.g., ISO13849, IEC61508, EN/IEC62061,...).

DANGER! When using a PM motor, even if the drive output is shut off by the Safe Disable function, a break down of two output transistors can cause current to flow through the motor winding, resulting in a rotor movement for a maximum angle of 180 degree (electrically). Make sure such a situation would have no effect on the safety of the application when using the Safe Disable function. This is not a concern with induction motors.

DANGER! The Safe Disable function can switch off the drive output, but does not cut the drive power supply and cannot electrically isolate the drive output from the input. Always shut off the drive power supply when performing maintenance or installations on the drive input side as well as the drive output side.

DANGER! When using the Safe Disable inputs, make sure to remove the wire links between terminals H1, H2, and HC that were installed prior to shipment. Failing to do so will keep the Safe Disable circuit from operating properly and can cause injury or even death.

DANGER! All safety features (including Safe Disable) should be inspected daily and periodically. If the system is not operating normally, there is a risk of serious personal injury.

DANGER! Only a qualified technician with a thorough understanding of the drive, the instruction manual, and safety standards should be permitted to wire, inspect, and maintain the Safe Disable input.

NOTICE: From the moment terminal inputs H 1 and H 2 have opened, it takes up to 1 ms for drive output to shut off completely. The sequence set up to trigger terminals H1 and H2 should make sure that both terminals remain open for at least 1 ms in order to properly interrupt drive output.

NOTICE: The Safe Disable Monitor (output terminals DM+ and DM-) should not be used for any other purpose than to monitor the Safe Disable status or to discover a malfunction in the Safe Disable inputs. The monitor output is not considered a safe output.

Using the Safe Disable Function

The Safe Disable inputs provide a stop function in compliance with "Safe Torque Off" as defined in the IEC61800-5-2. Safe Disable inputs have been designed to meet the requirements of the ISO13849-1, Category 3 PLd, and IEC61508, SIL2.

A Safe Disable Status Monitor for error detection in the safety circuit is also provided.

Safe Disable Circuit

The Safe Disable circuit consists of two independent input channels that can block the output transistors. In addition, it provides a monitoring channel that indicates the status of those two input channels.

The input can either use the drive internal power supply or an external power supply. Use jumper S3 on the terminal board to select between Sink or Source mode with either internal or external power supply.
A single photo coupler output is available to monitor the status of the Safe Disable terminals. Refer to Control Circuit Terminal Functions on page 17 for signal specifications when using this output.

■ Disabling and Enabling the Drive Output ("Safe Torque Off")

The diagram below illustrates the Safe Disable input operation.

Entering the "Safe Torque Off" State

Whenever either one Safe Disable input or both inputs open, the motor torque is shut off by switching off the drive output. If the motor was running before the Safe Disable inputs opened, then the motor will coast to stop, regardless of the stopping method set in parameter b1-03.
Notice that the "Safe Torque Off" state can only be achieved using the Safe Disable function. Removing the Run command stops the drive and shuts the output off (baseblock), but does not create a "Safe Torque Off" status.

Note: To avoid an uncontrolled stop during normal operation, make sure that the Safe Disable inputs are opened first when the motor has completely stopped.

Returning to Normal Operation after Safe Disable

The Safe Disable function can only be deactivated when a Run command is not active.
When Safe Disable was activated during stop, normal operation can be resumed by simply turning on both Safe Disable inputs (i.e., by deactivating "Safe Torque Off").

When Safe Disable was activated during run, first the Run command has to be removed and then the Safe Disable inputs have to be turned on before the drive can be restarted.

Safe Disable Monitor Output Function and Digital Operator Display

The table below explains the drive output and Safe Disable monitor state depending on the Safe Disable inputs.

Safe Disable Input Status		Safe Disable Status Monitor, DM+ - DM-	Drive Output Status	Digital Operator Display
Input 1, H1-HC	Input 2, H2-HC	OFF	Safely disabled, "Safe Torque Off"	Hbb (flashes)
OFF	OFF	OFF	ON	Safely disabled, "Safe Torque Off"
ON	OF	HbbF (flashes)		

8 Safe Disable Input Function

Safe Disable Input Status		Safe Disable Status Monitor, DM+ - DM-	Drive Output Status	Digital Operator Display
Input 1, H1-HC	Input 2, H2-HC			
OFF	ON	ON	Safely disabled, "Safe Torque Off"	HbbF (flashes)
ON	ON	ON	Baseblock, ready for operation	Normal display

Safe Disable Status Monitor

With the Safe Disable monitor output (terminals DM+ and DM-), the drive provides a safety status feedback signal. This signal should be read by the device that controls the Safe Disable inputs (PLC or a safety relay) in order to prohibit leaving the "Safe Torque Off" status in case the safety circuit malfunctions. Refer to the instruction manual of the safety device for details on this function.

Digital Operator Display

When both Safe Disable inputs are open, Hbb will flash in the digital operator display.
Should only one of the Safe Disable channels be on while the other is off, HbbF will flash in the display to indicate that there is a problem in the safety circuit or in the drive. This display should not appear under normal conditions if the Safe Disable circuit is utilized properly. Refer to General Fault and Alarms on page 31 to resolve possible errors.

Revision History

The revision dates and the numbers of the revised manuals appear on the bottom of the back cover.

MANUAL NO. TOEP C710616 96A

Date of Publication	Rev. No.	Section	Revised Content
May 2012	-		First edition

YASKAWA AC Drive A1000
 IP54 Wall Mount
 Quick Start Guide

EUROPEAN HEADQUARTERS

YASKAWA EUROPE GmbH
Hauptstrasse 185, 65760 Eschborn, Germany
Phone: +49 (0)6196 569300 Fax: +49 (0)6196 569398
E-mail: info@yaskawa.eu.com Internet: http://www.yaskawa.eu.com
U.S.A.

YASKAWA AMERICA, INC.
2121 Norman Drive South, Waukegan, IL 60085, U.S.A.
Phone: (800) YASKAWA (927-5292) or +1 8478877000 Fax: +1 8478877310
Internet: http://www.yaskawa.com

JAPAN

YASKAWA ELECTRIC CORPORATION
New Pier Takeshiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo, 105-6891, Japan
Phone: +81 (0)3 54024502 Fax: +81 (0)3 54024580
Internet: http://www.yaskawa.co.jp

YASKAWA

YASKAWA Europe GmbH

[^0]: $<1>$ Sealing grommets are fitted to control circuit wiring holes on receipt.
 $<2>$ Note that the cable gland body and locknut are sold separately.

