

$\label{eq:served_serve} \begin{array}{c} \Sigma \text{-7-Series AC Serve Drive} \\ \textbf{Linear Servemotor} \\ \textbf{Product Manual} \end{array}$

Model: SGLG/SGLF/SGLT/SGLC

Copyright © 2014 YASKAWA ELECTRIC CORPORATION

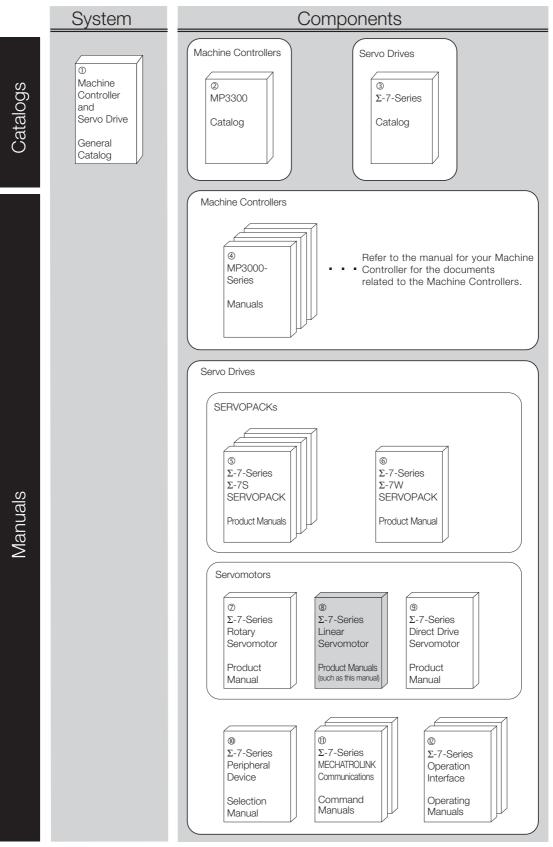
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of Yaskawa. No patent liability is assumed with respect to the use of the information contained herein. Moreover, because Yaskawa is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, Yaskawa assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

About this Manual

This manual provides information required to select, install, connect, and maintain Linear Servomotors for Σ -7-Series AC Servo Drives.

Read and understand this manual to ensure correct usage of the Σ -7-Series AC Servo Drives.

Keep this manual in a safe place so that it can be referred to whenever necessary.


Outline of Manual

The contents of the chapters of this manual are described in the following table. Refer to these chapters as required.

Chapter	Chapter Title	Contents
1	Basic Information on Servomotors	Provides basic information on Linear Servomotors, including Servomo- tor part names and combinations with SERVOPACKs.
2	Capacity Selection	Describes calculation methods to use when selecting Servomotor capacities.
3	Specifications, Ratings, and External Dimensions of SGLG Servomotors	Describes how to interpret the model numbers of SGLG Servomotors and gives their specifications, ratings, and external dimensions.
4	Specifications, Ratings, and External Dimensions of SGLF Servomotors	Describes how to interpret the model numbers of SGLF Servomotors and gives their specifications, ratings, and external dimensions.
5	Specifications, Ratings, and External Dimensions of SGLT Servomotors	Describes how to interpret the model numbers of SGLT Servomotors and gives their specifications, ratings, and external dimensions.
6	Specifications, Ratings, and External Dimensions of SGLC Servomotors	Describes how to interpret the model numbers of SGLC Servomotors and gives their specifications, ratings, and external dimensions.
7	Equipment Design Precautions	Provides precautions for equipment design.
8	Servomotor Installation	Describes the installation conditions, procedures, and precautions for Servomotors.
9	Connecting Linear Encoders	Describes the conditions and procedures for mounting linear encoders.
10	Connections between Servomotors and SERVOPACKs	Describes the cables that are used to connect the Servomotors and SERVOPACKs. It also provides information on peripheral devices and provides related precautions.
11	Maintenance and Inspection	Describes the maintenance, inspection, and disposal of a Servomotor.

Related Documents

The relationships between the documents that are related to the Servo Drives are shown in the following figure. The numbers in the figure correspond to the numbers in the table on the following pages. Refer to these documents as required.

Classification	Document Name	Document No.	Description	
 ① Machine Controller and Servo Drive General Catalog 	Machine Controller and Servo Drive Solutions Catalog	KAEP S800001 22	Provides detailed information required to select MP3000-Series Machine Controllers and Σ-7-Series AC Servo Drives.	
② MP3300 Catalog	Machine Controller MP3300	KAEP C880725 03	Provides detailed information on MP3300 Machine Controllers, including features and specifica- tions.	
③ Σ-7-Series Catalog	AC Servo Drives Σ -7 Series	KAEP S800001 23	Provides detailed information on Σ -7-Series AC Servo Drives, including features and specifications.	
④ MP3000-Series Manuals	Machine Controller MP3000 Series MP3300 Product Manual	SIEP C880725 21	Describes the functions, specifica- tions, operating methods, mainte- nance, inspections, and troubleshooting of the MP3000- series MP3300 Machine Control- lers.	
	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 28		
⑤ Σ-7-Series Σ-7S SERVOPACK Product Manuals	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with MECHATROLINK-II Communications References Product Manual	SIEP S800001 27	Provide detailed information on selecting Σ -7-Series SERVO-PACKs and information on install-	
	Σ -7-Series AC Servo Drive Σ -7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual	SIEP S800001 26	ing, connecting, setting, performing trial operation for, tuning, and mon- itoring the Servo Drives.	
© Σ-7-Series Σ-7W SERVOPACK Product Manual	Σ -7-Series AC Servo Drive Σ -7W SERVOPACK with MECHATROLINK-III Communications References Product Manual	SIEP S800001 29		
 Ø Σ-7-Series Rotary Servomotor Product Manual 	Σ-7-Series AC Servo Drive Rotary Servomotor Product Manual	SIEP S800001 36		
® Σ-7-Series Linear Servomotor Product Manual	Σ-7-Series AC Servo Drive Linear Servomotor Product Manual	This manual (SIEP S800001 37)	Provide detailed information on selecting, installing, and connecting the Σ -7-Series Servomotors.	
 Σ-7-Series Direct Drive Servomotor Product Manual 	Σ-7-Series AC Servo Drive Direct Drive Servomotor Product Manual	SIEP S800001 38	Continued on next page.	

Continued on next page.

Classification	Document Name	Document No.	Description
[®] Σ-7-Series Peripheral Device Selection Manual	Σ-7-Series AC Servo Drive Peripheral Device Selection Manual	SIEP S800001 32	Describes the peripheral devices for a Σ -7-Series Servo System.
Σ -7-Series	Σ-7-Series AC Servo Drive MECHATROLINK-II Communications Command Manual	SIEP S800001 30	Provides detailed information on the MECHATROLINK-II communications commands that are used for a Σ -7-Series Servo System.
MECHATROLINK Communications Command Manuals	Σ-7-Series AC Servo Drive MECHATROLINK-III Communications Standard Servo Profile Command Manual	SIEP S800001 31	Provides detailed information on the MECHATROLINK-III communi- cations standard servo profile com- mands that are used for a Σ -7- Series Servo System.
® Σ-7-Series	Σ-7-Series AC Servo Drive Digital Operator Operating Manual	SIEP S800001 33	Describes the operating proce- dures for a Digital Operator for a Σ -7-Series Servo System.
Operation Interface Operating Manuals	AC Servo Drives Engineering Tool SigmaWin+ Online Manual Σ-7 Component	SIEP S800001 48	Provides detailed operating proce- dures for the SigmaWin+ Engineer- ing Tool for a Σ -7-Series Servo System.

Using This Manual

◆ Technical Terms Used in This Manual

The following terms are used in this manual.

Term	Meaning
Servomotor	A Σ -7-Series Linear Servomotor.
SERVOPACK	A Σ -7-Series Servo Amplifier.
Servo Drive	The combination of a Servomotor and SERVOPACK.
Main Circuit Cable	One of the cables that connect to the main circuit terminals, including the Main Circuit Power Supply Cable, Control Power Supply Cable, and Servomotor Main Circuit Cable.

Trademarks

- MECHATROLINK is a trademark of the MECHATROLINK Members Association.
- QR code is a trademark of Denso Wave Inc.
- Other product names and company names are the trademarks or registered trademarks of the respective company. "TM" and the ® mark do not appear with product or company names in this manual.

Visual Aids

The following aids are used to indicate certain types of information for easier reference.

Indicates precautions or restrictions that must be observed. Also indicates alarm displays and other precautions that will not result in machine damage.

Indicates definitions of difficult terms or terms that have not been previously explained in this manual.

Example Indicates operating or setting examples.

Information Indicates supplemental information to deepen understanding or useful information.

Safety Precautions

♦ Safety Information

To prevent personal injury and equipment damage in advance, the following signal words are used to indicate safety precautions in this document. The signal words are used to classify the hazards and the degree of damage or injury that may occur if a product is used incorrectly. Information marked as shown below is important for safety. Always read this information and heed the precautions that are provided.

• Indicates precautions that, if not heeded, are likely to result in loss of life, serious injury, or fire.

• Indicates precautions that, if not heeded, could result in loss of life, serious injury, or fire.

• Indicates precautions that, if not heeded, could result in relatively serious or minor injury, or in fire.

NOTICE

• Indicates precautions that, if not heeded, could result in property damage.

◆ Safety Precautions That Must Always Be Observed

General Precautions

- Read and understand this manual to ensure the safe usage of the product.
- Keep this manual in a safe, convenient place so that it can be referred to whenever necessary. Make sure that it is delivered to the final user of the product.
- Do not remove covers, cables, connectors, or optional devices while power is being supplied to the SERVOPACK.

There is a risk of electric shock, operational failure of the product, or burning.

- Connect the ground terminals on the SERVOPACK and Servomotor to ground poles according to local electrical codes (100 Ω or less for a SERVOPACK with a 100-VAC or 200-VAC power supply, and 10 Ω or less for a SERVOPACK with a 400-VAC power supply).
 There is a risk of electric shock or fire.
- Do not attempt to disassemble, repair, or modify the product. There is a risk of fire or failure. The warranty is void for the product if you disassemble, repair, or modify it.

- The SERVOPACK heat sinks, regenerative resistors, Servomotors, and other components can be very hot while power is ON or soon after the power is turned OFF. Implement safety measures, such as installing covers, so that hands and parts such as cables do not come into contact with hot components. There is a risk of burn injury.
- Do not damage, pull on, apply excessive force to, place heavy objects on, or pinch cables. There is a risk of failure, damage, or electric shock.
- Do not use the product in an environment that is subject to water, corrosive gases, or flammable gases, or near flammable materials. There is a risk of electric shock or fire.

NOTICE

- Do not attempt to use a SERVOPACK or Servomotor that is damaged or that has missing parts.
- Install external emergency stop circuits that shut OFF the power supply and stops operation immediately when an error occurs.
- Always use a Servomotor and SERVOPACK in one of the specified combinations.
- Do not touch a SERVOPACK or Servomotor with wet hands. There is a risk of product failure.

Storage Precautions

- Store the Magnetic Way of a Linear Servomotor in the package that was used for delivery.
- Do not place an excessive load on the product during storage. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- Do not install or store the product in any of the following locations.
 - Locations that are subject to direct sunlight
 - · Locations that are subject to ambient temperatures that exceed product specifications
 - Locations that are subject to relative humidities that exceed product specifications
 - · Locations that are subject to condensation as the result of extreme changes in temperature
 - · Locations that are subject to corrosive or flammable gases
 - · Locations that are near flammable materials
 - · Locations that are subject to dust, salts, or iron powder
 - Locations that are subject to water, oil, or chemicals
 - · Locations that are subject to vibration or shock that exceeds product specifications
 - Locations that are subject to radiation
 - If you store or install the product in any of the above locations, the product may fail or be damaged.
- Although machined surfaces are covered with an anticorrosive coating, rust can develop due to storage conditions or the length of storage. If you store the product for more than six months, reapply an anticorrosive coating to machined surfaces, particularly the core.
- Consult with your Yaskawa representative if you have stored products for an extended period of time.

Transportation Precautions

- Transport the product in a way that is suitable to the mass of the product.
- Do not hold onto the cables attached to the Moving Coil when you move a Servomotor. There is a risk of disconnection, damage, or injury.
- Do not use the eyebolts on a SERVOPACK or Servomotor to move the machine. There is a risk of damage or injury.
- When you handle a SERVOPACK or Servomotor, be careful of sharp parts, such as the corners. There is a risk of injury.
- Do not hold onto the magnet protective cover when you move a Magnetic Way. There is a risk of injury from the edges of the cover. There is also a risk of deforming the cover.
- Do not place an excessive load on the product during transportation. (Follow all instructions on the packages.)

There is a risk of injury or damage.

NOTICE

- A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock. There is a risk of failure or damage.
- Do not subject connectors to shock. There is a risk of faulty connections or damage.
- If disinfectants or insecticides must be used to treat packing materials such as wooden frames, plywood, or pallets, the packing materials must be treated before the product is packaged, and methods other than fumigation must be used.

Example: Heat treatment, where materials are kiln-dried to a core temperature of 56°C for 30 minutes or more.

If the electronic products, which include stand-alone products and products installed in machines, are packed with fumigated wooden materials, the electrical components may be greatly damaged by the gases or fumes resulting from the fumigation process. In particular, disinfectants containing halogen, which includes chlorine, fluorine, bromine, or iodine can contribute to the erosion of the capacitors.

• Do not overtighten the eyebolts on a SERVOPACK or Servomotor. If you use a tool to overtighten the eyebolts, the tapped holes may be damaged.

Installation Precautions

 The Magnetic Way of a Linear Servomotor uses a strong permanent magnet. To ensure safety and prevent accidents, observe the following precautions when you install the Linear Servomotor.

If you have a heart pacemaker or any other electronic medical device, do not go near the location of or near a machine where the Magnetic Way of a Linear Servomotor is being used. The influence of the magnetism may cause the medical device to malfunction or fail.

• Make sure that there are no magnetic substances, such pieces of iron, near the worksite before you unpack or install the Magnetic Way.

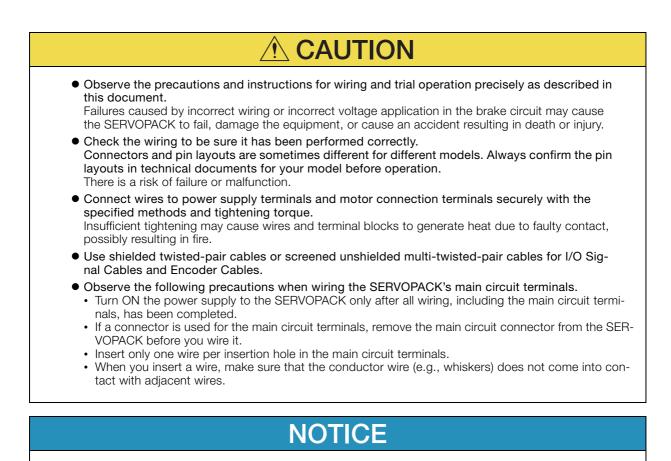
There is a risk of injury or damage to the magnets in the Magnetic Way due to the magnetic attraction of the Magnetic Way.

- Securely mount the Servomotor to the machine. If the Servomotor is not mounted securely, it may come off the machine during operation.
- Use all of the mounting screw holes on the Linear Servomotor to mount the Servomotor to the machine.

There is a risk of damage or injury if the Servomotor is not mounted correctly.

- Do not use the mounting screw holes on a Linear Servomotor for any other purpose. There is a risk of damage or injury if the Servomotor is not mounted correctly.
- The Magnetic Way of a Linear Servomotor uses a strong permanent magnet. To ensure safety and prevent accidents, observe the following precautions when you install the Linear Servomotor.
 - Do not bring magnetic substances (including Moving Coils and tools) near the Magnetic Way. There is a risk of serious injury (such as pinching your hand) due to the large magnetic attraction exerted by the magnetic side of the Magnetic Way. Pay sufficient attention to the worksite and surrounding area to prevent magnetic substances from approaching the Magnetic Way.
 - Use only nonmagnetic tools for all work.
- Install the Servomotor or SERVOPACK in a way that will support the mass given in technical documents.
- Install SERVOPACKs, Servomotors, and regenerative resistors on nonflammable materials. Installation directly onto or near flammable materials may result in fire.
- Do not step on or place a heavy object on the product. There is a risk of failure, damage, or injury.
- Do not allow any foreign matter to enter the SERVOPACK or Servomotor. There is a risk of failure or fire.
- When you remove the dummy plates for reducing magnetic force from the Magnetic Way of an SGLF Linear Motor, be careful of the magnetic attraction of the Magnetic Way. Do not place the dummy plates close to the Magnetic Way after you remove them. There is a risk of injury, damage to the magnets in the Magnetic Way, or damage to the magnet protective cover.
- Implement safety measures, such as installing a cover so that the Linear Servomotor cannot be touched accidentally during operation.

	NOTICE
	 Do not install or store the product in any of the following locations. Locations that are subject to direct sunlight Locations that are subject to ambient temperatures that exceed product specifications Locations that are subject to relative humidities that exceed product specifications Locations that are subject to condensation as the result of extreme changes in temperature Locations that are subject to corrosive or flammable gases Locations that are near flammable materials Locations that are subject to vater, oil, or chemicals Locations that are subject to radiation I cocations that are subject to radiation I you store or install the product in any of the above locations, the product may fail or be damaged
	 The Magnetic Way of a Linear Servomotor uses a strong permanent magnet. To ensure safety and prevent accidents, observe the following precautions when you install the Linear Servomotor. Do not work on a Magnetic Way with electronic devices (such as clocks, calculators, or computers or magnetic storage media (such as IC cards or magnetic cards) on your person or bring such devices or media near a Magnetic Way. The influence of the magnetism may cause the device or media to malfunction or fail.
	• Use the product in an environment that is appropriate for the product specifications. If you use the product in an environment that exceeds product specifications, the product may fail or be damaged.
	 A SERVOPACK or Servomotor is a precision device. Do not drop it or subject it to strong shock There is a risk of failure or damage.
,	 In an application where the Servomotor would be subjected to large quantities of water or oil, implement measures to protect the Servomotor from large quantities of liquid, such as installing covers to protect against water and oil.
	 In an environment that contains magnetic substances, such iron cuttings or powder, implement measures to prevent the magnetic substances from adhering to or entering the product. Be particularly careful not to let foreign matter, such as metals, enter the gaps between a Magnetic Way and Moving Coil. If foreign material adheres in the gaps between a Moving Coil and Magnetic Way, operation may stop or burning may occur.


Wiring Precautions

DANGER

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

• Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.

- Whenever possible, use the Cables specified by Yaskawa. If you use any other cables, confirm the rated current and application environment of your model and use the wiring materials specified by Yaskawa or equivalent materials.
- Securely tighten cable connector screws and lock mechanisms. Insufficient tightening may result in cable connectors falling off during operation.
- Do not bundle power lines (e.g., the Main Circuit Cable) and low-current lines (e.g., the I/O Signal Cables or Encoder Cables) together or run them through the same duct. If you do not place power lines and low-current lines in separate ducts, separate them by at least 30 cm. If the cables are too close to each other, malfunctions may occur due to noise affecting the low-current lines.
- For a motor with a built-in temperature sensor, use the temperature sensor to protect the motor from overheating.
- Secure the cable from the Moving Coil of the Linear Servomotor so that it moves together with the Moving Coil.

There is a risk of cable disconnection.

Operation Precautions

WARNING Before starting operation with a machine connected, change the settings of the switches and parameters to match the machine. Unexpected machine operation, failure, or personal injury may occur if operation is started before appropriate settings are made. • Do not radically change the settings of the parameters. There is a risk of unstable operation, machine damage, or injury. Install limit switches or stoppers at the ends of the moving parts of the machine to prevent unexpected accidents. There is a risk of machine damage or injury. • Forcing the motor to stop for overtravel is disabled when the Jog (Fn002), Origin Search (Fn003), or Easy FFT (Fn206) utility function is executed. Take necessary precautions. There is a risk of machine damage or injury. When an alarm occurs, the motor will coast to a stop or stop with the dynamic brake according to a setting in the SERVOPACK. The coasting distance will change with the moment of inertia of the load. Check the coasting distance during trial operation and implement suitable safety measures on the machine. • Do not enter the machine's range of motion during operation. There is a risk of injury. • Do not touch the moving parts of the Servomotor or machine during operation. There is a risk of injury.

- Always turn OFF the servo before you turn OFF the power supply. If you turn OFF the main circuit power supply or control power supply during operation before you turn OFF the servo, the Servomotor will stop as follows:
 - If you turn OFF the main circuit power supply during operation without turning OFF the servo, the Servomotor will stop abruptly with the dynamic brake.
 - If you turn OFF the control power supply without turning OFF the servo, the stopping method that is used by the Servomotor depends on the model of the SERVOPACK. For details, refer to the manual for the SERVOPACK.

• Linear Servomotors do not have holding brakes. If the load mass is large or the speed is high, the coasting distance will increase even if you perform a rapid stop with a dynamic brake. Install safety devices (external brakes or stoppers) so that the ends of the moving parts of the machine will not strike anything.

NOTICE

- Always measure the vibration of the Servomotor with the Servomotor mounted to the machine and confirm that the vibration is within the allowable value.
 If the vibration is too large, the Servomotor will be damage guickly and bolts may become loose.
- When you adjust the gain during system commissioning, use a measuring instrument to monitor the torque waveform and speed waveform and confirm that there is no vibration.
 If a high gain causes vibration, the Servomotor will be damaged quickly.
- An alarm or warning may occur if communications are performed with the host controller while the SigmaWin+ or Digital Operator is operating.
 If an alarm or warning occurs, it may interrupt the current process and stop the system.

Maintenance and Inspection Precautions

• Do not change any wiring while power is being supplied. There is a risk of electric shock or injury.

WARNING

• Wiring and inspections must be performed only by qualified engineers. There is a risk of electric shock or product failure.

 Wait for six minutes after turning OFF the power supply and then make sure that the CHARGE indicator is not lit before starting wiring or inspection work. Do not touch the power supply terminals while the CHARGE lamp is lit after turning OFF the power supply because high voltage may still remain in the SERVOPACK. There is a risk of electric shock.

Troubleshooting Precautions

• The product may suddenly start to operate when the power supply is recovered after a momentary power interruption. Design the machine to ensure human safety when operation restarts. There is a risk of injury.

- When an alarm occurs, remove the cause of the alarm and ensure safety. Then reset the alarm or turn the power supply OFF and ON again to restart operation. There is a risk of injury or machine damage.
- If the Servo ON signal is input to the SERVOPACK and an alarm is reset, the Servomotor may suddenly restart operation. Confirm that the servo is OFF and ensure safety before you reset an alarm.

There is a risk of injury or machine damage.

• If there is the possibility that an external force (including gravity) may move the current position and create a hazardous situation when power is interrupted or an error occurs, install an external braking mechanism that ensures safety.

Disposal Precautions

 When you dispose of a Linear Servomotor, heat the Magnetic Way to 300°C or higher for one hour to demagnetize it.
 There is a risk of injuny from the strong magnetic attraction.

There is a risk of injury from the strong magnetic attraction.

• When disposing of the product, treat it as ordinary industrial waste. However, local ordinances and national laws must be observed. Implement all labeling and warnings as a final product as required.

General Precautions

- Figures provided in this document are typical examples or conceptual representations. There may be differences between them and actual wiring, circuits, and products.
- The products shown in illustrations in this document are sometimes shown without covers or protective guards. Always replace all covers and protective guards before you use the product.
- If you need a new copy of this document because it has been lost or damaged, contact your nearest Yaskawa representative or one of the offices listed on the back of this document.
- This document is subject to change without notice for product improvements, specifications changes, and improvements to the manual itself.
 We will update the document number of the document and issue revisions when changes are made.
- Any and all quality guarantees provided by Yaskawa are null and void if the customer modifies the product in any way. Yaskawa disavows any responsibility for damages or losses that are caused by modified products.

Warranty

Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called the "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period.

This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- · Causes not attributable to the delivered product itself
- Modifications or repairs not performed by Yaskawa
- Use of the delivered product in a manner in which it was not originally intended
- Causes that were not foreseeable with the scientific and technological understanding at the time
 of shipment from Yaskawa
- Events for which Yaskawa is not responsible, such as natural or human-made disasters

Limitations of Liability

- Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- Yaskawa shall not be responsible for any programs (including parameter settings) or the results of program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
- Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

Suitability for Use

- It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - Other systems that require a similar high degree of safety
- Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Compliance with UL Standards, EU Directives, and Other Safety Standards

Certification marks for the standards for which the product has been certified by certification bodies are shown on nameplate. Products that do not have the marks are not certified for the standards.

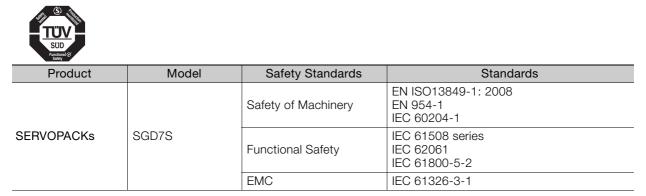
North American Safety Standards (UL)

Product	Model	UL Standards (UL File No.)
SERVOPACKs ^{*1}	SGD7S	UL 61800-5-1
Rotary Servomotors ^{*1}	• SGM7A • SGM7J • SGM7P • SGM7G	UL 1004-1 UL 1004-6
Direct Drive Servomotors ^{*1}	• SGMCV	
Linear Servomotors	SGLGW SGLFW SGLFW2 ^{*2} SGLTW	UL 1004 (E165827)

*1. Certification is scheduled for April 2014.

*2. Certification is scheduled for April 2015.

European Directives


して	SUD Functiona (*		
Product	Model	European Directive	Harmonized Standards
		Machinery Directive 2006/42/EC	EN ISO13849-1: 2008 EN 954-1
SERVOPACKs*1	SGD7S	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4 EN 61800-3
		Low Voltage Directive 2006/95/EC	EN 50178 EN 61800-5-1
Rotary	• SGM7A • SGM7J • SGM7P	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61800-3
Servomotors ^{*1}	• SGM7P • SGM7G	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Direct Drive Servomotors	• SGMCS-	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61800-3 ^{*2}
Gervoniotora	(small capacity, coreless) • SGMCV	Low Voltage Directive 2006/95/EC	EN 60034-1 EN 60034-5
Linear Servomotors	• SGLG • SGLF • SGLFW2 ^{*3} • SGLT • SGLC	EMC Directive 2004/108/EC	EN 55011 group 1, class A EN 61000-6-2 EN 61000-6-4
Servomotors		Low Voltage Directive 2006/95/EC	EN 60034-1

*1. Certification is scheduled for April 2014.

*2. Only the SGMCV is certified.

*3. Certification is scheduled for April 2015.

Safety Standards

Note: Certification is scheduled for April 2014.

◆ Safe Performance

Item	Standards	Performance Level	
Safety Integrity Level	IEC 61508	SIL3	
Salety Integrity Level	IEC 62061	SILCL3	
Performance Level	EN ISO 13849-1	PLe (Category 3)	
Stop Category	IEC 60204-1	Stop category 0	
Safety Function	IEC 61800-5-2	STO	

Note: Certification is scheduled for April 2014.

Contents

bout this Manual	 iii
utline of Manual	 iii
elated Documents	 iv
sing This Manual	 . vii
afety Precautions	
'arranty	
ompliance with UL Standards, EU Directives, and Other Safety Standards	 . xix

1	Ba	asic li	nformation on Servomotors	
	1.1	Servo	omotor Part Names 1-2	
_		1.1.1 1.1.2 1.1.3 1.1.4	SGLG Servomotors1-2SGLF Servomotors1-2SGLT Servomotors1-2SGLC Servomotors1-2	
ſ	1.2	Interp	preting the Nameplates 1-3	
		1.2.1 1.2.2 1.2.3	SGLG and SGLC Servomotors1-3SGLF and SGLT Servomotors1-3SGLF□2 Servomotors1-3	
ſ	1.3	Outlin	ne of Model Designations 1-4	
_		1.3.1 1.3.2	Servomotor	
ſ	1.4	Comb	binations of Servomotors and SERVOPACKs	
2	2.1	Selec	ty Selection ting the Servomotor Capacity	
$\langle 3 \rangle$				
	3.1	Mode	el Designations	
		3.1.1 3.1.2 3.1.3	Moving Coil3-2Magnetic Way3-2Precautions on Moving Coils with Polarity Sensors3-3	
ſ	3.2	Ratings and Specifications		
		3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Specifications: With Standard-Force Magnetic Way3-4Ratings: With Standard-Force Magnetic Way3-5Servomotor Overload Protection Characteristics3-7Specifications: With High-Force Magnetic Way3-8Ratings: With High-Force Magnetic Way3-8Servomotor Overload Protection Characteristics3-7	
	3.3	Exter	nal Dimensions	

xxi

3.3.2	SGLGW-40	-14
3.3.3	SGLGW-60	-18
3.3.4	SGLGW-90	-22
3.3.5	Connector Specifications	-24

4

Specifications, Ratings, and External Dimensions of SGLF Servomotors

4.1	Mode	el Designations
	4.1.1	SGLFW2 Models
	4.1.2	SGLFW Models4-3
	4.1.3	Precautions on Moving Coils with Polarity Sensors
4.2	Ratin	gs and Specifications: SGLFW2 Models
	4.2.1	Specifications
	4.2.2	Ratings4-6
	4.2.3	Ratings4-8
4.3	Ratin	gs and Specifications: SGLFW Models
	4.3.1	Specifications
	4.3.2	Ratings4-11
4.4	Exter	nal Dimensions 4-14
	4.4.1	SGLFW2-30
	4.4.2	SGLFW2-45
	4.4.3	SGLFW2-90
	4.4.4	SGLFW2-1D
	4.4.5	SGLFW-20
	4.4.6	SGLFW-35
	4.4.7 4.4.8	SGLFW-50
		Connector Specifications
	4.4.9	Lonnector Specifications 4-39

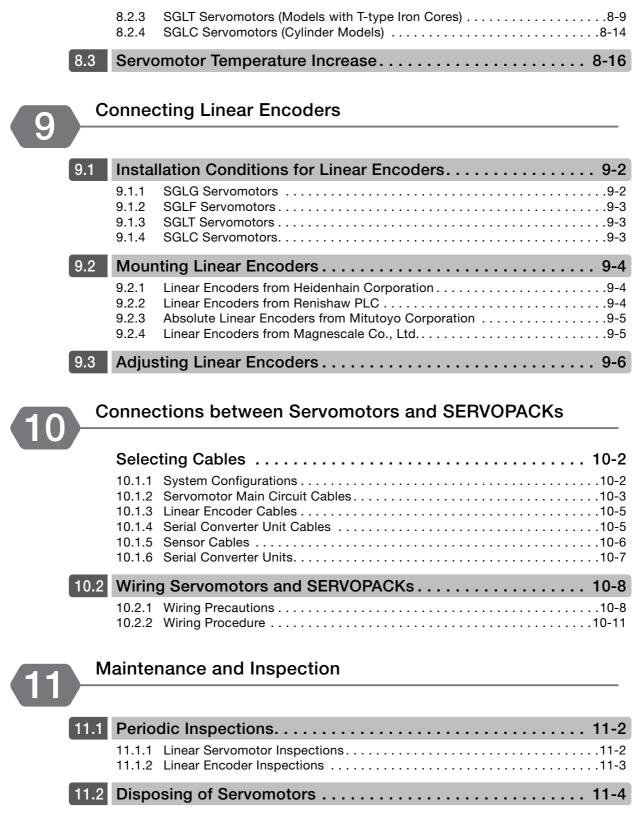
5

Specifications, Ratings, and External Dimensions of SGLT Servomotors

5.1	Mode	Pl Designations
	5.1.1 5.1.2 5.1.3	Moving Coil.5-2Magnetic Way.5-2Precautions on Moving Coils with Polarity Sensors.5-3
5.2	Ratin	gs and Specifications 5-4
	5.2.1 5.2.2 5.2.3 5.2.4	Specifications5-4Ratings5-5Force-Motor Speed Characteristics.5-7Servomotor Overload Protection Characteristics.5-8
5.3	Exter	nal Dimensions 5-9
	5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6	SGLTW-20: Standard Models.5-9SGLTW-35: Standard Models.5-12SGLTW-35□□□□H□: High-efficiency Models.5-15SGLTW-40: Standard Models.5-17SGLTW-50: High-efficiency Models.5-20Connector Specifications.5-22

Specifications, Ratings, and External Dimensions of SGLC Servomotors

6.1	Mode	l Designations	2
	6.1.1 6.1.2 6.1.3 6.1.4	Combination of Moving Coil and Magnetic Way6-Moving Coil6-Magnetic Way6-List of Models6-	-3 -3
6.2	Rating	gs and Specifications6-	6
	6.2.1 6.2.2 6.2.3 6.2.4	Specifications 6- Ratings 6- Force-Motor Speed Characteristics 6- Servomotor Overload Protection Characteristics 6-	-7 -8
6.3	Exter	nal Dimensions	0
	6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	SGLC-D16. 6-1 SGLC-D20. 6-1 SGLC-D25. 6-1 SGLC-D32. 6-1 Connector Specifications 6-1	12 14 16


Equipment Design Precautions

7.1	Influe	ence of Magnetic Attraction
	7.1.1 7.1.2 7.1.3	SGLF Servomotors7-2SGLT Servomotors7-3SGLC Servomotors7-4
7.2	Influe	ence of Magnetic Way Leakage Flux
	7.2.1 7.2.2 7.2.3 7.2.4	SGLG Servomotors7-5SGLF Servomotors7-5SGLT Servomotors7-6SGLC Servomotors7-6
7.3	Spec	ial Precautions for SGLT Servomotors
7.4	Spec	ial Precautions for SGLC Servomotors
7.5	Spec	ifications When Connecting More Than One Moving Coil. 7-9
	7.5.1 7.5.2	Mounting Position Precautions 7-9 Connection Procedure 7-10

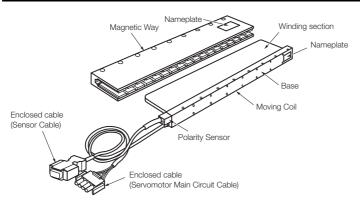
8

Servomotor Installation

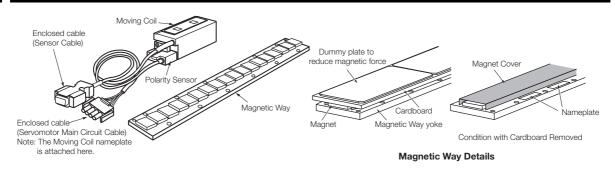
8.1	Insta	Ilation Conditions	8-2
		Installation Environment	
	8.1.2	Installation Orientation.	. 8-2
8.2	Insta	Ilation Procedure	8-3
8.2	8.2.1	Ilation Procedure SGLG Servomotors (Coreless Models) SGLF Servomotors (Models with F-type Iron Cores)	. 8-3

Revision History

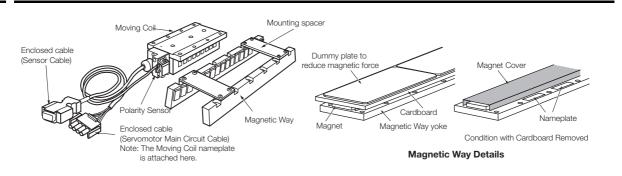
Basic Information on Servomotors

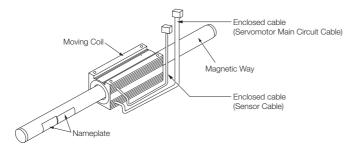

This chapter provides basic information on Linear Servomotors, including Servomotor part names and combinations with SERVOPACKs.

1.1	Servo	motor Part Names1-2
	1.1.1 1.1.2 1.1.3 1.1.4	SGLG Servomotors1-2SGLF Servomotors1-2SGLT Servomotors1-2SGLC Servomotors1-2
1.2	Interp	preting the Nameplates1-3
	1.2.1 1.2.2 1.2.3	SGLG and SGLC Servomotors1-3SGLF and SGLT Servomotors1-3SGLF□2 Servomotors1-3
1.3	Outlin	ne of Model Designations1-4
	1.3.1 1.3.2	Servomotor
1.4	Comb	inations of Servomotors and SERVOPACKs . 1-5


1.1.1 SGLG Servomotors

1.1 Servomotor Part Names


1.1.1 SGLG Servomotors


1.1.2 SGLF Servomotors

1.1.3 SGLT Servomotors

1.1.4 SGLC Servomotors

1.2.1 SGLG and SGLC Servomotors

1.2 Interpreting the Nameplates

The following basic information is provided on the nameplate.

Moving Coil model

Order number

Serial number

Rated force and thermal class

SGLG and SGLC Servomotors 1.2.1

2.2

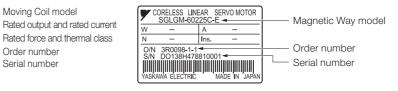
Moving Coils

322

140

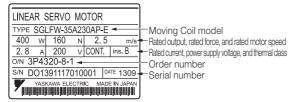
O/N

CORELESS LINEAR SERVO MOTOR SGLGW-60A253CP-E

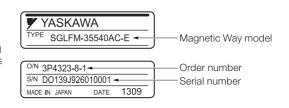

A

Ins В -

379770-1-1 -DO1391852510001 -

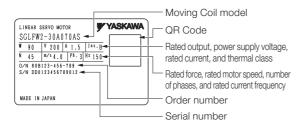

YASKAWA ELECTRIC MADE IN JAPA

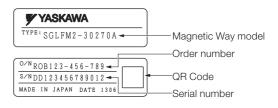
Magnetic Ways



1.2.2 SGLF and SGLT Servomotors

Moving Coils

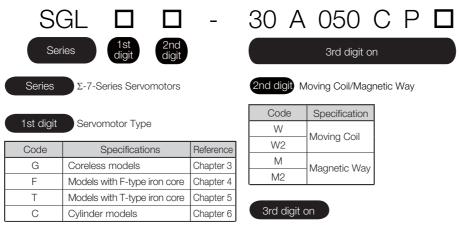

Magnetic Ways


Basic Information on Servomotors

1.2.3 SGLF² Servomotors

Moving Coils

Magnetic Ways



1.3.1 Servomotor

.3 Outline of Model Designations

1.3.1 Servomotor

This section outlines the model numbers of Σ -7-Series Servomotors. For details, refer to the chapter for your type of Servomotor.

The specifications for the 3rd digit on depend on the Servomotor type.

7th digit Design Revision Order

8th+9th+10th digits Options

Back-mounted installation

Varnished

1.3.2 SERVOPACKs

This section outlines the model numbers of Σ -7-Series SERVOPACKs. For details, refer to the manual for your SERVOPACK.

- Ω Σ-7-Series Σ-7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual (Manual No.: SIEP S800001 26)
- Ω Σ-7-Series Σ-7S SERVOPACK with MECHATROLINK-II Communications References Product Manual (Manual No.: SIEP S800001 27)
- Ω Σ-7-Series Σ-7S SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 28)
- Ω Σ-7-Series Σ-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (Manual No.: SIEP S800001 29)

Code	Specification
SGD7S	Single-axis SERVOPACKs
SGD7W	Two-axis SERVOPACKs

0.05 kW to 1.5 kW

4th digit Power Supply Voltage200 VAC

- Analog voltage/pulse train reference
- MECHATROLINK-II communications reference
- MECHATROLINK-III communications reference

1.4 Combinations of Servomotors and SERVOPACKs

Linear Servomotor Model			Instanta-	SERVOPACK Model		
		Rated Force N	neous Maxi- mum Force N	SGD7S-DDDD	SGD7W-DDDD	
S	SGLGW-30A050C	12.5	40	R70A	1R6A	
S	SGLGW-30A080C	25	80	R90A	1R6A	
5	SGLGW-40A140C	47	140	NSOA	IIIOA	
	SGLGW-40A253C	93	280	1R	6A	
	SGLGW-40A365C	140	420	2R	8A	
els), Used with Stan-	SGLGW-60A140C	70	220	1R	6A	
dard-Force Mag-	SGLGW-60A253C	140	440	2R	8A	
•	SGLGW-60A365C	210	660	5R	5A	
5	SGLGW-90A200C	325	1300	120A		
5	SGLGW-90A370C	550	2200	180A	_	
5	SGLGW-90A535C	750	3000	200A		
001.0	SGLGW-40A140C	57	230	1R	6A	
SGLG (Coreless Mod-	SGLGW-40A253C	114	460	2R	8A	
	SGLGW-40A365C	171	690	3R8A	5R5A	
	SGLGW-60A140C	85	360	1R	6A	
Force Magnetic	SGLGW-60A253C	170	720	3R8A	5R5A	
Way	SGLGW-60A365C	255	1080	7R	6A	
5	SGLFW-20A090A	25	86			
S	SGLFW-20A120A	40	125	- 1R6A		
S	SGLFW-35A120A	80	220			
S	SGLFW-35A230A	160	440	3R8A	5R5A	
S	SGLFW-50A200B	280	600	5R	5A	
S	SGLFW-50A380B					
S	SGLFW-1ZA200B	- 560	1200	120A	_	
	SGLFW-1ZA380B	1120	2400	200A		
SGLF	SGLFW2-30A070A	45	135	()		
(Models with F-type Iron Cores)	SGLFW2-30A120A	90	270	1R	6A	
		180	540	3R8A	_	
	SGLFW2-30A230A*	170	500		8A	
S	SGLFW2-45A200A	280	840	5R	5A	
		500	1680	180A		
	SGLFW2-45A380A*	560	1500	0	-	
S	SGLFW2-90A200A	560	1680	120A	-	
S	SGLFW2-90A380A	1120	3360	0004	_	
6	SGLFW2-1DA380A	1680	5040	200A		

* The force depends on the SERVOPACK that is used with the Servomotor.

Continued on next page.

1

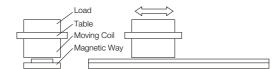
Continued from previous particular					
		Instanta-	SERVOPACK Model		
Linear Ser	Rated Force N	neous Maxi- mum Force N	SGD7S-DDDD	SGD7W-DDDD	
	SGLTW-20A170A	130	380	3R8A	5R5A
	SGLTW-20A320A	250	760	7R	6A
	SGLTW-20A460A	380	1140	120A	-
	SGLTW-35A170A	220	660	5D	5A
SGLT	SGLTW-35A170H	300	600		15A
(Models with	SGLTW-35A320A	440	1320	120A	
T-type Iron Cores)	SGLTW-35A320H	600	1200	120A	
	SGLTW-35A460A	670	2000	1004	
	SGLTW-40A400B	670	2600	180A	
	SGLTW-50A170H	450	900	5R	5A
	SGLTW-50A320H	900	1800	120A	-
	SGLC-D16A085A	17	60	R70A	
	SGLC-D16A115A	25	90	n/UA	1R6A
	SGLC-D16A145A	34	120	R90A	
	SGLC-D20A100A	30	150	- 1R6A 2R8A	
	SGLC-D20A135A	45	225		
SGLC	SGLC-D20A170A	60	300		
(Cylinder Models)	SGLC-D25A125A	70	280	1R6A	
	SGLC-D25A170A	105	420	2R8A	
	SGLC-D25A215A	140	560	5R	5A
	SGLC-D32A165A	90	420	2R	8A
	SGLC-D32A225A	135	630	ED	5
	SGLC-D32A285A	180	840	- 5R5A	

Capacity Selection

2

This chapter describes calculation methods to use when selecting Servomotor capacities.

2.1 Selecting the Servomotor Capacity2-2

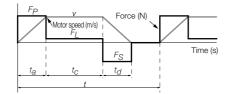

2.1 Selecting the Servomotor Capacity

Use Yaskawa's SigmaJunmaSize+, an AC servo drive capacity selection program, to select the Servomotor capacity. With the SigmaJunmaSize+, you can find the optimum Servomotor capacity by simply selecting and entering information according to instructions from a wizard.

Contact your Yaskawa representative for information on the SigmaJunmaSize+.

Refer to the following selection examples to select Servomotor capacities with manual calculations rather than with the above software.

1. Mechanical Specifications



Item	Code	Value
Load Mass	m_W	1 kg
Table Mass	m _T	2 kg
Motor Speed	V	2 m/s
Feeding Distance	1	0.76 m
Friction Coefficient	μ	0.2

Item	Code	Value
Acceleration Time	t _a	0.02 s
Constant-speed Time	t _c	0.36 s
Deceleration Time	t _d	0.02 s
Cycle Time	t	0.5 s
External Force on Linear Motion Section	F	0 N

2. Operation Pattern

1

- **3.** Steady-State Force (Excluding Servomotor Moving Coil) $F_L = \{9.8 \times \mu \times (m_W + m_T)\} + F = 9.8 \times 0.2 \times (1 + 2) + 0 = 5.88 \text{ (N)}$
- 4. Acceleration Force (Excluding Servomotor Moving Coil)

$$F_P = (m_W + m_T) \times \frac{v}{t_a} + F_L = (1 + 2) \times \frac{2}{0.02} + 5.88 = 305.88$$
 (N)

5. Provisional Selection of Linear Servomotor

① Selection Conditions

- $F_P \leq$ Maximum force $\times 0.9$
- $F_s \leq$ Maximum force $\times 0.9$
- $F_{rms} \leq$ Rated force $\times 0.9$

The following Servomotor Moving Coil and Magnetic Way meet the selection conditions.

- SGLGW-60A253CP Linear Servomotor Moving Coil
- SGLGM-60
 C Linear Servomotor Magnetic Way

2 Specifications of the Provisionally Selected Servomotor

Item	Value
Maximum Force	440 (N)
Rated Force	140 (N)
Moving Coil Mass (m _M)	0.82 (kg)
Servomotor Magnetic Attraction (F _{att})	0 (N)

6. Verification of the Provisionally Selected Servomotor

Steady-State Force

$$F_L = \mu \{9.8 \times (m_W + m_T + m_M) + F_{att}\} = 0.2 \{9.8 \times (1 + 2 + 0.82) + 0\} = 7.5 (N)$$

Verification of Acceleration Force

$$F_P = (m_W + m_T + m_M) \times \frac{v}{t_a} + F_L = (1 + 2 + 0.82) \times \frac{2}{0.02} + 7.5$$

- = 389.5 (N) \leq Maximum force \times 0.9 (= 396 N)... Satisfactory
- Verification of Deceleration Force

$$F_{S} = (m_{W} + m_{T} + m_{M}) \times \frac{v}{t_{a}} - F_{L} = (1 + 2 + 0.82) \times \frac{2}{0.02} - 7.5$$

= 374.5 (N) \leq Maximum force \times 0.9 (= 396 N)... Satisfactory

• Verification of Effective Force

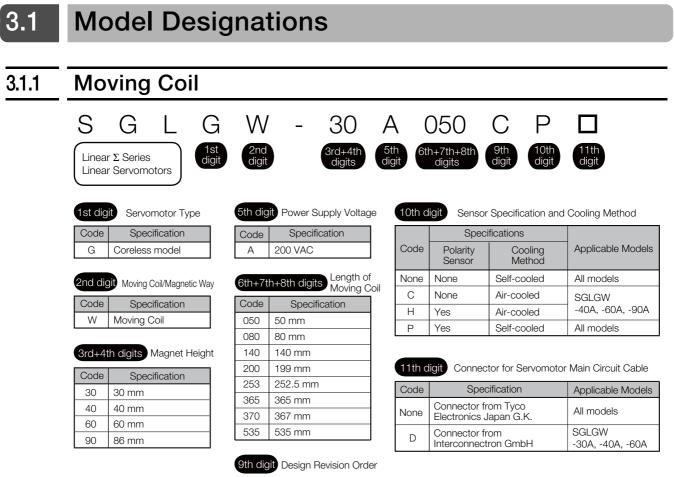
$$F_{rms} = \sqrt{\frac{F_P^2 \cdot t_a + F_L^2 \cdot t_c + F_s^2 \cdot t_d}{t}} = \sqrt{\frac{389.5^2 \times 0.02 + 7.5^2 \times 0.36 + 374.5^2 \times 0.02}{0.5}}$$

= 108.3 (N) \leq Rated force \times 0.9 (= 132.3 N)... Satisfactory

7. Result

It has been verified that the provisionally selected Servomotor is applicable.

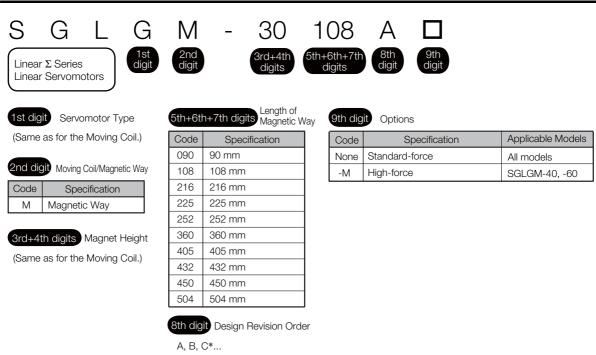
2


Specifications, Ratings, and External Dimensions of SGLG Servomotors

Ê

This chapter describes how to interpret the model numbers of SGLG Servomotors and gives their specifications, ratings, and external dimensions.

3.1	Model Designations3-				
	3.1.1 3.1.2 3.1.3	Moving Coil3-2Magnetic Way3-2Precautions on Moving Coils withPolarity Sensors3-3			
3.2	Ratings and Specifications				
	3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6	Specifications: With Standard-Force MagneticWay			
3.3	External Dimensions				
	3.3.1 3.3.2 3.3.3 3.3.4 3.3.5	SGLGW-30			


3.1.1 Moving Coil

A, B...

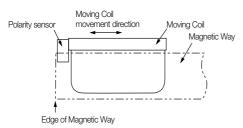
Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

3.1.2 Magnetic Way

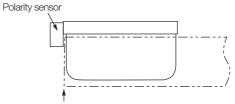
* The SGLGM-40 and SGLGM-60 also have a CT code.

• C = Without mounting holes on the bottom

3.1.3 Precautions on Moving Coils with Polarity Sensors

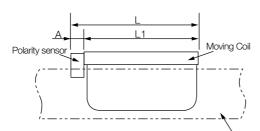

- CT = With mounting holes on the bottom
- Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

3.1.3 Precautions on Moving Coils with Polarity Sensors



When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, consider the total length (L) of the Moving Coil and the polarity sensor. Refer to the following table.

Correct Installation



Incorrect Installation

Edge of Magnetic Way

 Total Length of Moving Coil with Polarity Sensor

Magnetic Way

Moving Coil Model SGLGW-	Length of Moving Coil, L1 (mm)	Length of Polarity Sensor, A (mm)	Total Length, L (mm)
30A050 D P D	50	0	50
30A080 □ P □	80	(Included in the length of Moving Coil.)	80
40A140□H□ 40A140□P□	140	16	156
40A253□H□ 40A253□P□	252.5		268.5
40A365□H□ 40A365□P□	365		381
60A140□H□ 60A140□P□	140	16	156
60A253□H□ 60A253□P□	252.5		268.5
60A365□H□ 60A365□P□	365		381
90A200□H□ 90A200□P□	199	0	199
90A370□H□ 90A370□P□	367	(Included in the length of	367
90A535□H□ 90A535□P□	535	Moving Coil.)	535

3

3.2.1 Specifications: With Standard-Force Magnetic Way

3.2 Ratings and Specifications

3.2.1 Specifications: With Standard-Force Magnetic Way

Linear	Servomotor	30	A		40A			60A			90A	
0	Coil Model	050C	080C	140C	253C	365C	140C	253C	365C	200C	370C	535C
Time Rati	ng					Co	ntinuou	S				
Thermal C	Class		В									
Insulation	Resistance		500 VDC, 10 MΩ min.									
Withstand	d Voltage				-	1,500 VA	C for 1	minute				
Excitation	l	Permanent magnet										
Cooling M	Cooling Method Self-cooled or air-cooled (Only self-cooled models are available for the SGLGW-30A.)											
Protective	e Structure						IP00					
	Surrounding Air Tempera- ture				0°C	to 40°C	C (with n	o freezir	ng)			
Environ- mental	Surrounding Air Humidity		20% to 80% relative humidity (with no condensation)									
Condi- tions	Installation Site	MustMustMust	be well facilitat have ar	-ventilat e inspec n altitude	ed and to tion and e of 1,00	corrosive free of d d cleanir 00 m or etic field	ust and 1g. less.					
Shock Resis-	Impact Accelera- tion Rate		196 m/s ²									
tance	Number of Impacts	2 times										
Vibra- tion Resis- tance	Vibration Accelera- tion Rate	49 m/s ² (the vibration resistance in three directions, vertical, side-to-side, and front-to-back)							d			

3.2.2 Ratings: With Standard-Force Magnetic Way

3.2.2 Ratings: With Standard-Force Magnetic Way

Linear Serve		30	A		40A			60A			90A	
Moving Coil SGLGV		050C	080C	140C	253C	365C	140C	253C	365C	200C	370C	535C
Rated Motor Speed (Refer- ence Speed during Speed Control) ^{*1}	m/s	1.5	1.5	2.0	2.0	2.0	2.3	2.3	2.3	1.8	1.5	1.5
Maximum Speed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	4.8	4.8	4.8	4.0	4.0	4.0
Rated Force ^{*1,}	Ν	12.5	25	47	93	140	70	140	210	325	550	750
Maximum Force ^{*1}	N	40	80	140	280	420	220	440	660	1300	2200	3000
Rated Cur- rent ^{*1}	Arms	0.51	0.79	0.80	1.6	2.4	1.2	2.2	3.3	4.4	7.5	10.2
Maximum Current ^{*1}	Arms	1.6	2.5	2.4	4.9	7.3	3.5	7.0	10.5	17.6	30.0	40.8
Moving Coil Mass	kg	0.10	0.15	0.34	0.60	0.87	0.42	0.76	1.1	2.2	3.6	4.9
Force Con- stant	N/Arms	26.4	33.9	61.5	61.5	61.5	66.6	66.6	66.6	78.0	78.0	78.0
BEMF Con- stant	Vrms/ (m/s)/ phase	8.80	11.3	20.5	20.5	20.5	22.2	22.2	22.2	26.0	26.0	26.0
Motor Con- stant	N/\sqrt{W}	3.66	5.63	7.79	11.0	13.5	11.1	15.7	19.2	26.0	36.8	45.0
Electrical Time Constant	ms	0.19	0.41	0.43	0.43	0.43	0.45	0.45	0.45	1.4	1.4	1.4
Mechanical Time Constant	ms	7.5	4.7	5.6	5.0	4.8	3.4	3.1	3.0	3.3	2.7	2.4
Thermal Resistance (with Heat Sink)	K/W	5.19	3.11	1.67	0.87	0.58	1.56	0.77	0.51	0.39	0.26	0.22
Thermal Resistance (without Heat Sink)	K/W	8.13	6.32	3.02	1.80	1.23	2.59	1.48	1.15	1.09	0.63	0.47
Magnetic Attraction	N	0	0	0	0	0	0	0	0	0	0	0
Combined Mag SGLGM-	Combined Magnetic Way,			4(60			90 00 A		
Combined Seria verter Unit, JZD		250	251	252	253	254	258	259	260	264	265	266
Applicable	SGD7S-	R70A	R90A	R90A	1R6A	2R8A	1R6A	2R8A	5R5A	120A	180A	200A
SERVOPACKs	SGD7W-	1R6A	1R6A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	-	-	

Specifications, Ratings, and External Dimensions of SGLG Servomotors

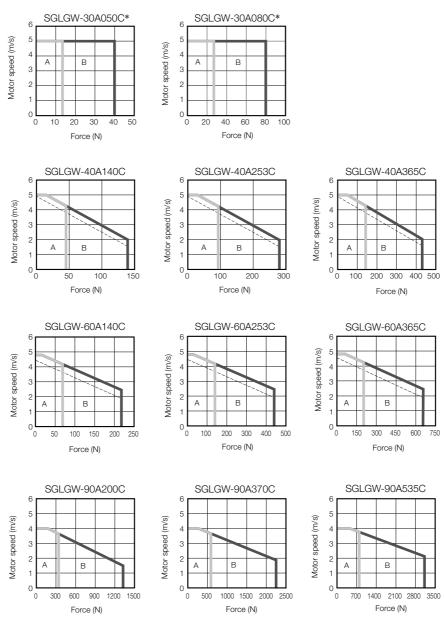
3

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.

Heat Sink Dimensions

• 200 mm × 300 mm × 12 mm: SGLGW-30A050C, -30A080C, -40A140C, and -60A140C

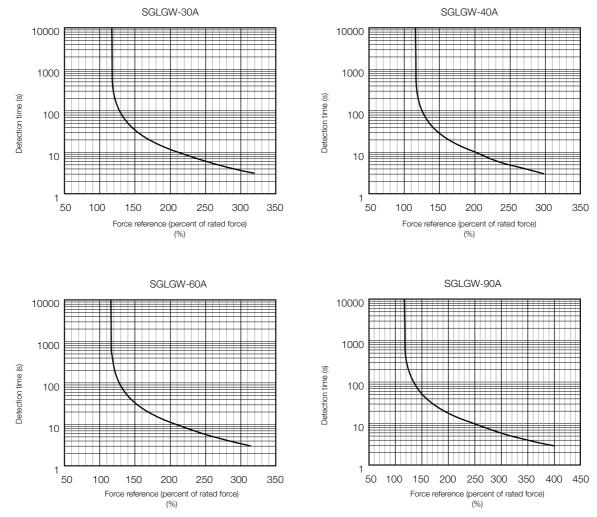

- 300 mm \times 400 mm \times 12 mm: SGLGW-40A253C and -60A253C

- + 400 mm \times 500 mm \times 12 mm: SGLGW-40A365C and -60A365C
- + 800 mm \times 900 mm \times 12 mm: SGLGW-90A200C, -90A370C, and -90A535C

3.2.2 Ratings: With Standard-Force Magnetic Way

Force-Motor Speed Characteristics

- A : Continuous duty zone (solid lines): With three-phase 200-V input
- B : Intermittent duty zone ------ (dotted lines): With single-phase 200-V input


* The characteristics are the same for three-phase 200 V and single-phase 200 V.

- Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

3.2.3 Servomotor Overload Protection Characteristics

3.2.3 Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in ◆ *Force-Motor Speed Characteristics* on page 3-6.

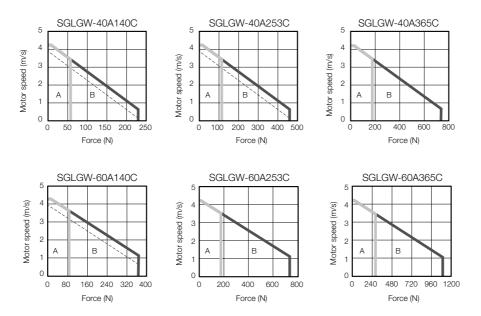
3.2.4 Specifications: With High-Force Magnetic Way

3.2.4 Specifications: With High-Force Magnetic Way

Linear Servom	otor Moving Coil Model		40A			60A			
	SGLGW-	140C	253C	365C	140C	253C	365C		
Time Rating		Continuous							
Thermal Class				E	3				
Insulation Resistar	nce		5	500 VDC, 1	$0 M\Omega$ min				
Withstand Voltage			1	,500 VAC 1	for 1 minut	е			
Excitation				Permaner	nt magnet				
Cooling Method			Se	elf-cooled	or air-coole	ed			
Protective Structu	re	IP00							
	Surrounding Air Temperature	0°C to 40°C (with no freezing)							
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)							
Environmental Conditions	Installation Site	 Must be Must fae Must had 	e well-venti cilitate insp	lated and t bection and ude of 1,00	corrosive a free of dus d cleaning. 00 m or les etic fields.	t and mois			
Shock	Impact Acceleration Rate	196 m/s ²							
Resistance Number of Impacts 2 times									
Vibration Resistance	Vibration Acceleration Rate	n Rate 49 m/s ² (the vibration resistance in three directions, vert side-to-side, and front-to-back)							

3.2.5 Ratings: With High-Force Magnetic Way

Linear Servomotor Moving C	oil Model		40A			60A	
SGLGW-		140C	253C	365C	140C	253C	365C
Rated Motor Speed (Reference Speed during Speed Control)*1	m/s	1.0	1.0	1.0	1.0	1.0	1.0
Maximum Speed ^{*1}	m/s	4.2	4.2	4.2	4.2	4.2	4.2
Rated Force ^{*1, *2}	Ν	57	114	171	85	170	255
Maximum Force ^{*1}	N	230	460	690	360	720	1080
Rated Current ^{*1}	Arms	0.80	1.6	2.4	1.2	2.2	3.3
Maximum Current ^{*1}	Arms	3.2	6.5	9.7	5.0	10.0	14.9
Moving Coil Mass	kg	0.34	0.60	0.87	0.42	0.76	1.1
Force Constant	N/Arms	76.0	76.0	76.0	77.4	77.4	77.4
BEMF Constant	Vrms/(m/s)/ phase	25.3	25.3	25.3	25.8	25.8	25.8
Motor Constant	N/√W	9.62	13.6	16.7	12.9	18.2	22.3
Electrical Time Constant	ms	0.43	0.43	0.43	0.45	0.45	0.45
Mechanical Time Constant	ms	3.7	3.2	3.1	2.5	2.3	2.2
Thermal Resistance (with Heat Sink)	K/W	1.67	0.87	0.58	1.56	0.77	0.51
Thermal Resistance (without Heat Sink)	K/W	3.02	1.80	1.23	2.59	1.48	1.15
Magnetic Attraction	Ν	0	0	0	0	0	0
Combined Magnetic Way, SGLG	40		M	60		М	
Combined Serial Converter Unit, J.	ZDP- DDD -	255	256	257	261	262	263
Applicable SERVOPACKs	SGD7S-	1R6A	2R8A	3R8A	1R6A	3R8A	7R6A
	SGD7W-	1R6A	2R8A	5R5A	1R6A	5R5A	7R6A

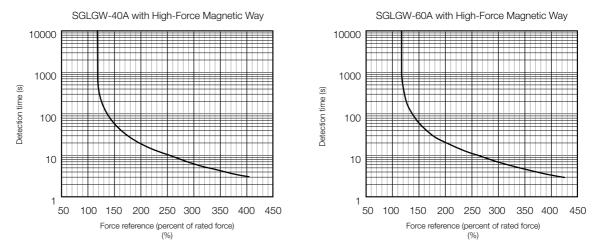

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

3.2.5 Ratings: With High-Force Magnetic Way

- *2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.
 - Heat Sink Dimensions
 - + 200 mm \times 300 mm \times 12 mm: SGLGW-40A140C and -60A140C
 - + 300 mm \times 400 mm \times 12 mm: SGLGW-40A253C and -60A253C
 - + 400 mm \times 500 mm \times 12 mm: SGLGW-40A365C and -60A365C

Force-Motor Speed Characteristics

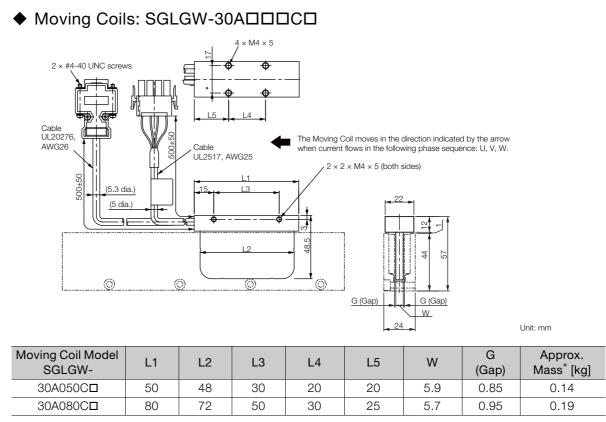
- A : Continuous duty zone ——— (solid lines): With three-phase 200-V input
- B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input



- Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

3.2.6 Servomotor Overload Protection Characteristics

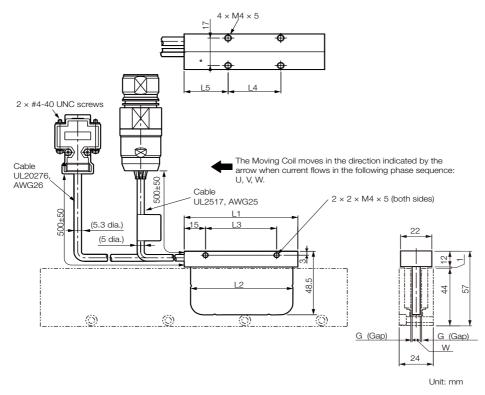
3.2.6 Servomotor Overload Protection Characteristics


The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in ◆ Force-Motor Speed Characteristics on page 3-9.

3.3 External Dimensions

3.3.1 SGLGW-30

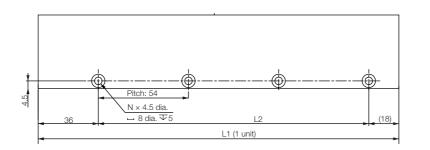


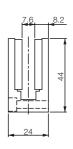
* The mass is for a Moving Coil with a Polarity Sensor.

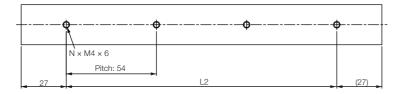
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLGW-30A□□□C□ Moving Coils on page 3-24

◆ Moving Coils: SGLGW-30A□□□C□D

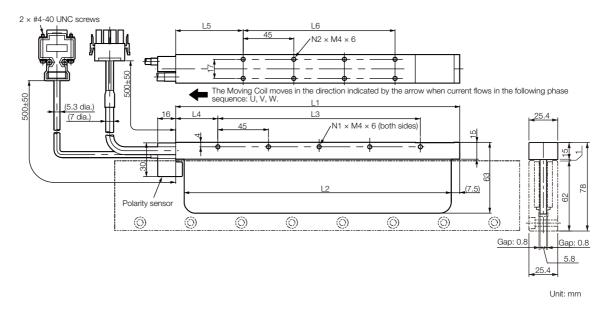

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	W	G (Gap)	Approx. Mass [*] [kg]
30A050C□D	50	48	30	20	20	5.9	0.85	0.14
30A080C□D	80	72	50	30	25	5.7	0.95	0.19


* The mass is for a Moving Coil with a Polarity Sensor.


Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ♦ SGLGW-30A□□□C□D Moving Coils on page 3-25

◆ Standard-Force Magnetic Ways: SGLGM-30□□□A

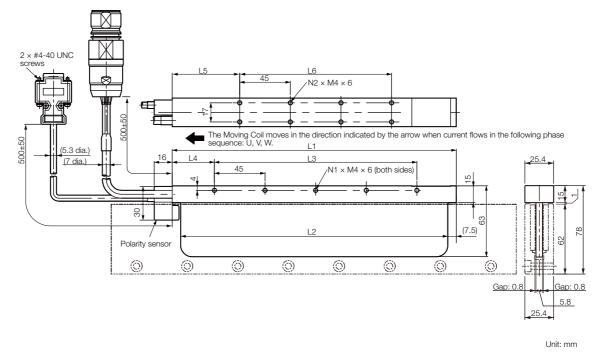


Unit: mm

Magnetic Way Model SGLGM-	L1	L2	Ν	Approx. Mass [kg]
30108A	108 -0.1	54	2	0.6
30216A	216 -0.1	162	4	1.1
30432A	432 -0.1	378	8	2.3

3.3.2 SGLGW-40

◆ Moving Coils: SGLGW-40A□□□C□

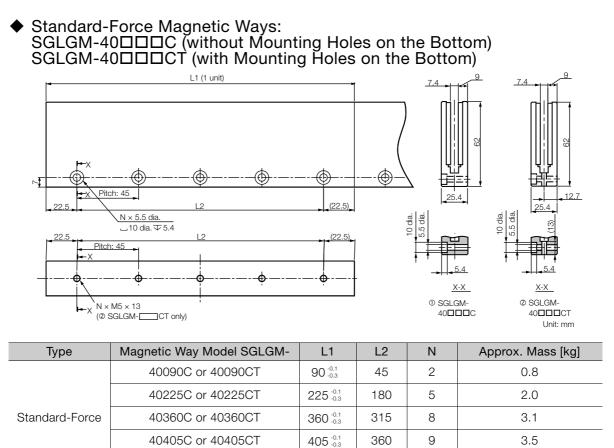

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
40A140C□	140	125	90	30	52.5	45	3	4	0.40
40A253Cロ	252.5	237.5	180	37.5	60	135	5	8	0.66
40A365Cロ	365	350	315	30	52.5	270	8	14	0.93

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-40A□□□C□ and -60A□□□C□ Moving Coils on page 3-26

◆ Moving Coils: SGLGW-40A□□□C□D

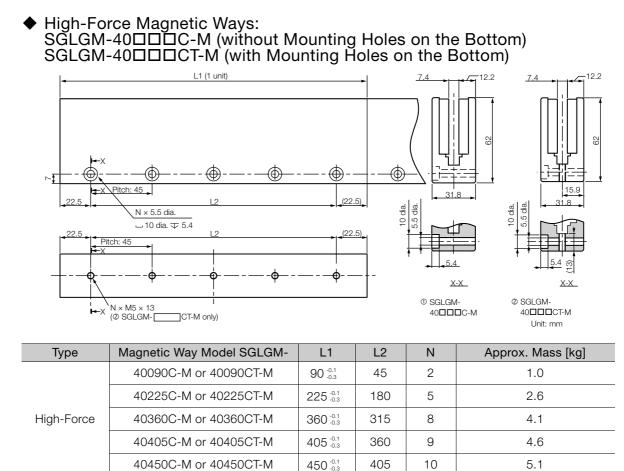


Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
40A140C□D	140	125	90	30	52.5	45	3	4	0.40
40A253CDD	252.5	237.5	180	37.5	60	135	5	8	0.66
40A365C D D	365	350	315	30	52.5	270	8	14	0.93

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

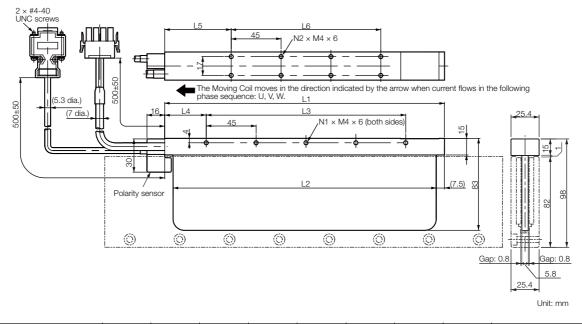
SGLGW-40A□□□C□D and -60A□□□C□D Moving Coils on page 3-27


450 -0.1

405

10

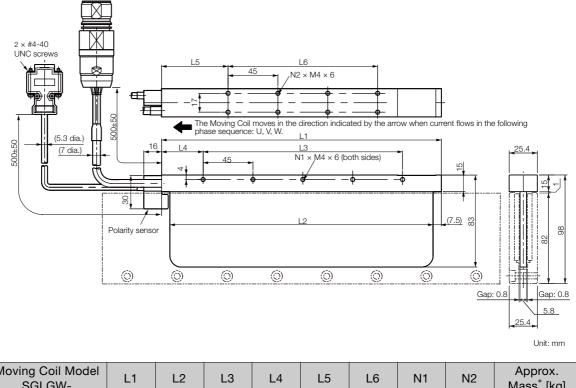
3.9


40450C or 40450CT

Specifications, Ratings, and External Dimensions of SGLG Servomotors

3.3.3 SGLGW-60

◆ Moving Coils: SGLGW-60A□□□C□

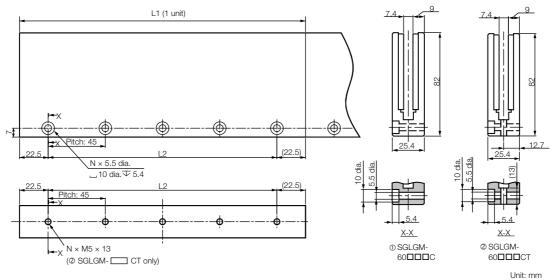

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
60A140Cロ	140	125	90	30	52.5	45	3	4	0.48
60A253Cロ	252.5	237.5	180	37.5	60	135	5	8	0.82
60A365Cロ	365	350	315	30	52.5	270	8	14	1.16

* The mass is for a Moving Coil with a Polarity Sensor.

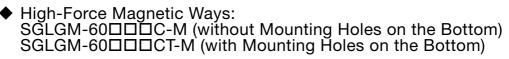
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

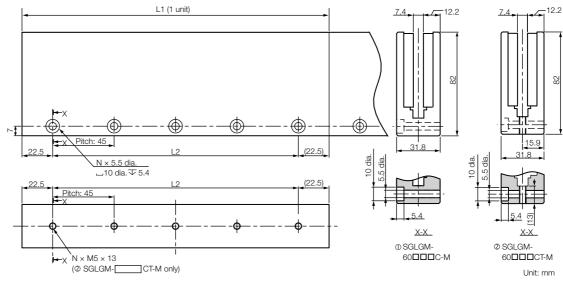
SGLGW-40A□□□C□ and -60A□□□C□ Moving Coils on page 3-26

◆ Moving Coils: SGLGW-60A□□□C□D


Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
60A140C□D	140	125	90	30	52.5	45	3	4	0.48
60A253CDD	252.5	237.5	180	37.5	60	135	5	8	0.82
60A365C D D	365	350	315	30	52.5	270	8	14	1.16

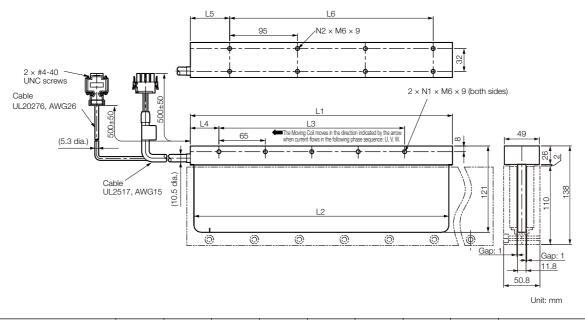
* The mass is for a Moving Coil with a Polarity Sensor.


Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.


SGLGW-40A□□□C□D and -60A□□□C□D Moving Coils on page 3-27

Standard-Force Magnetic Ways: SGLGM-600000 (without Mounting Holes on the Bottom) SGLGM-60000000 (with Mounting Holes on the Bottom)

Туре	Magnetic Way Model SGLGM-	L1	L2	Ν	Approx. Mass [kg]
	60090C or 60090CT	90 -0.1	45	2	1.1
	60225C or 60225CT	225 -0.1	180	5	2.6
Standard-Force	60360C or 60360CT	360 -0.1	315	8	4.1
	60405C or 60405CT	405 -0.1	360	9	4.6
	60450C or 60450CT	450 -0.3	405	10	5.1



Туре	Magnetic Way Model SGLGM-	L1	L2	Ν	Approx. Mass [kg]
	60090C-M or 60090CT-M	90 -0.1	45	2	1.3
	60225C-M or 60225CT-M	225 -0.1	180	5	3.3
High-Force	60360C-M or 60360CT-M	360 -0.1	315	8	5.2
	60405C-M or 60405CT-M	405 -0.1	360	9	5.9
	60450C-M or 60450CT-M	450 -0.3	405	10	6.6

3.3.4 SGLGW-90

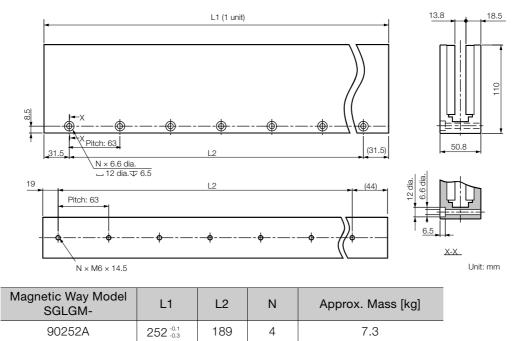
◆ Moving Coils: SGLGW-90A□□□C□

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
90A200Cロ	199	189	130	40	60	95	3	4	2.2
90A370Cロ	367	357	260	40	55	285	5	8	3.65
90A535C□	535	525	455	40	60	380	8	10	4.95

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLGW-90A□□□C□ Moving Coils on page 3-28


90504A

504 -0.1

441

8

14.7

3.3.5 Connector Specifications

♦ SGLGW-30A□□□C□ Moving Coils

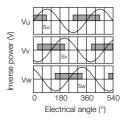
Servomotor Connector

Plug: 350779-1 Pins: 350924-1 or 770672-1 From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	_

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

♦ SGLGW-30A□□□C□D Moving Coils

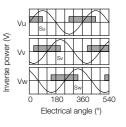
Servomotor Connector

Extension: SROC06JMSCN169 Pins: 021.423.1020 From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	Not used	-
5	Not used	-
6	FG	Green

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

		-	
Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

◆ SGLGW-40A□□C□ and -60A□□□C□ Moving Coils

Servomotor Connector

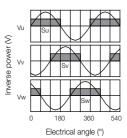
Plug: 350779-1

Pins: 350561-3 or 350690-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350570-3 or 350689-3

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

◆ SGLGW-40A□□C□D and -60A□□C□D Moving Coils

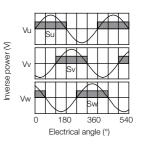
Servomotor Connector

Extension: SROC06JMSCN169 Pins: 021.423.1020 From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	Not used	-
5	Not used	-
6	FG	Green

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	_

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

♦ SGLGW-90A□□□C□ Moving Coils

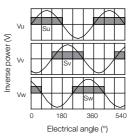
Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

• Polarity Sensor Connector

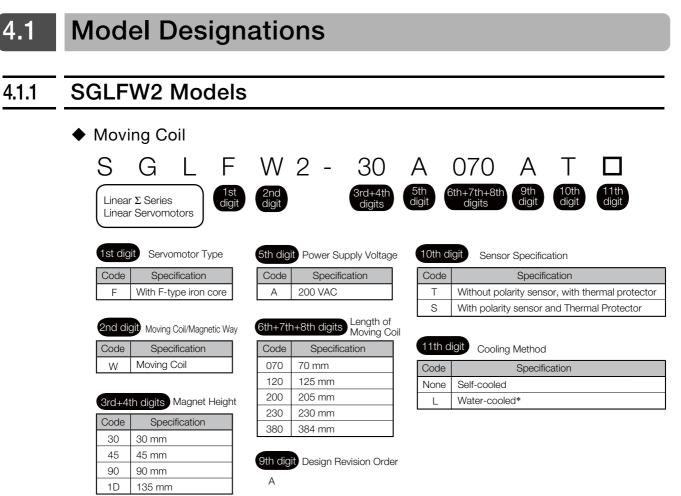

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

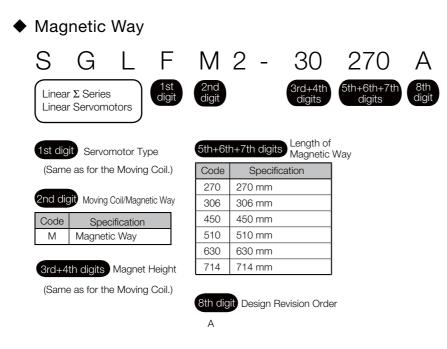
• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.



Specifications, Ratings, and External Dimensions of SGLF Servomotors

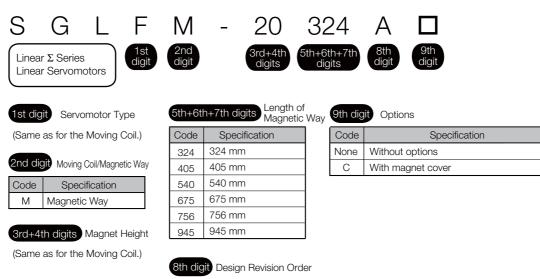
This chapter describes how to interpret the model numbers of SGLF Servomotors and gives their specifications, ratings, and external dimensions.


4.1	Mode	el Designations4-2
	4.1.1 4.1.2 4.1.3	SGLFW2 Models4-2SGLFW Models4-3Precautions on Moving Coils withPolarity Sensors4-4
4.2	Rating	gs and Specifications: SGLFW2 Models .4-5
	4.2.1 4.2.2 4.2.3	Specifications 4-5 Ratings 4-6 Ratings 4-8
4.3	Rating	gs and Specifications: SGLFW Models .4-10
	4.3.1 4.3.2	Specifications
4.4	Exter	nal Dimensions4-14
	4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9	SGLFW2-30 4-14 SGLFW2-45 4-19 SGLFW2-90 4-22 SGLFW2-1D 4-25 SGLFW-20 4-28 SGLFW-35 4-30 SGLFW-50 4-33 SGLFW-1Z 4-36 Connector Specifications 4-39

4.1.1 SGLFW2 Models

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

* Contact your Yaskawa representative for information on water-cooled models.



4.1.2 SGLFW Models

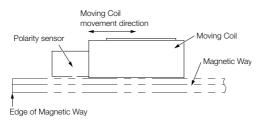
4.1.2 **SGLFW Models** Moving Coil S G F W 20 А 090А Ρ 1st digit diai Linear Σ Series Linear Servomotors 10th digit 1st digit Servomotor Type 5th digit Voltage Sensor Specification Code Specification Specification Specification Code Code With F-type iron core Ρ With polarity sensor F 200 VAC А Without polarity sensor None Length of 6th+7th+8th digits Moving Coil 2nd digit Moving Coil/Magnetic Way 11th digit Connector for Servomotor Main Circuit Cable Specification Code Specification Code Moving Coil W 090 91 mm Code Applicable Models Specification 120 127 mm Connector from Tyco None All models Electronics Japan G.K. 200 215 mm 3rd+4th digits Magnet Height SGLFW-35, -50, 230 235 mm Connector from D Code Specification Interconnectron GmbH -1Z**D**200B 380 395 mm 20 20 mm 35 36 mm 9th digit Design Revision Order 50 47.5 mm А, В ... 1Z 95 mm

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

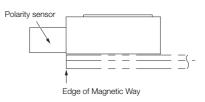
Magnetic Way

A, B ...

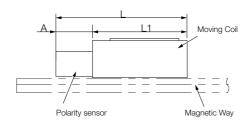
A Specifications, Ratings, and External Dimensions of SGLF Servomotors


4-3

4.1.3 Precautions on Moving Coils with Polarity Sensors


4.1.3 Precautions on Moving Coils with Polarity Sensors

When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, consider the total length (L) of the Moving Coil and the polarity sensor. Refer to the following table.


Correct Installation

Incorrect Installation

Total Length of Moving Coil with Polarity Sensor

Moving Coil Model SGLFW2-	Length of Moving Coil, L1 (mm)	Length of Polarity Sensor, A (mm)	Total Length, L (mm)
30A070AS	70		97
30A120AS	125	27	152
30A230AS	230		257
45A200AS	205	32	237
45A380AS	384	52	416
90A200AS	205	32	237
90A380AS	384	32	416
1DA380AS	384	32	416
	Moving Pola Coil, Sen		
Moving Coil Model SGLFW-	Moving Coil,	Length of Polarity Sensor, A (mm)	Total Length, L (mm)
Model	Moving Coil,	Polarity Sensor, A (mm)	Length,
Model SGLFW-	Moving Coil, L1 (mm)	Polarity Sensor,	Length, L (mm)
Model SGLFW- 20A090AP	Moving Coil, L1 (mm) 91	Polarity Sensor, A (mm) 22	Length, L (mm) 113
Model SGLFW- 20A090AP 20A120AP	Moving Coil, L1 (mm) 91 127	Polarity Sensor, A (mm)	Length, L (mm) 113 149
Model SGLFW- 20A090AP 20A120AP 35A120AP□	Moving Coil, L1 (mm) 91 127 127	Polarity Sensor, A (mm) 22 22	Length, L (mm) 113 149 149
Model SGLFW- 20A090AP 20A120AP 35A120AP□ 35A230AP□	Moving Coil, L1 (mm) 91 127 127 235	Polarity Sensor, A (mm) 22	Length, L (mm) 113 149 149 257
Model SGLFW- 20A090AP 20A120AP 35A120AP□ 35A230AP□ 50A200BP□	Moving Coil, L1 (mm) 91 127 127 235 215	Polarity Sensor, A (mm) 22 22	Length, L (mm) 113 149 149 257 237

4.2.1 Specifications

4.2 Ratings and Specifications: SGLFW2 Models

4.2.1 Specifications

Linear Se	Linear Servomotor Moving Coil		30A		45A		90)A	1DA	
М	odel SGLFW2-	070A🗆	120Aロ	230Aロ	200Aロ	380Aロ	200Aロ	380Aロ	380Aロ	
Time Rati	ng	Continuous								
Thermal C	Class				E	3				
Insulation	Resistance			50	00 VDC, 1	10 M Ω mii	n.			
Withstand	d Voltage			1,	500 VAC 1	for 1 minu	ite			
Excitation	1				Permaner	nt magnet				
Cooling N	lethod			Self-c	ooled and	d water-co	ooled*			
Protective	e Structure				IP	00				
	Surrounding Air Tem- perature	0°C to 40°C (with no freezing)								
Environ- mental	Surrounding Air Humidity		20% to	80% rela	ative humidity (with no condensation)					
Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 								
Shock	Impact Acceleration Rate	196 m/s ²								
Resis- tance	Number of Impacts	2 times								
Vibra- tion Resis- tance	Vibration Accelera- tion Rate		49 m/s ² (the vibration resistance in three directions, vertical, side-to-sic and front-to-back)							

* Contact your Yaskawa representative for information on water-cooled models.

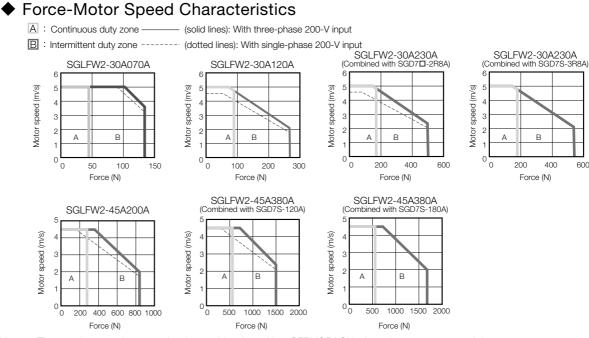
4.2.2 Ratings

4.2.2 Ratings

Linear Servomotor Moving Coil				30)A	45A			
Model	Model SGLFW2-		070Aロ	120Aロ	230	AD	200Aロ	380	DAD
Rated Motor Sp erence Speed d Speed Control)*	luring	m/s	4.0	4.0	4.0		4.0	4.0	
Maximum Spee	d*1	m/s	5.0	5.0	5.	0	4.5	4.5	
Rated Force ^{*1, *}	2	N	45	90	180	170	280	56	50
Maximum Force	^{*1}	N	135	270	540	500	840	1680	1500
Rated Current ^{*1}		Arms	1.4	1.5	2.9	2.8	4.4	8	.7
Maximum Curre	nt*1	Arms	5.3	5.2	10.5	9.3	16.4	32.7	27.5
Moving Coil Ma	SS	kg	0.50	0.90	1.	7	2.9	5	.5
Force Constant		N/Arms	33.3	64.5	64	.5	67.5	67	'.5
BEMF Constant		Vrms/ (m/s)/ phase	11.1	21.5	21	.5	22.5 22.5		2.5
Motor Constant		N/\sqrt{W}	11.3	17.3	24	.4	36.9	52.2	
Electrical Time	Constant	ms	7.6	7.3	7.	.3	19	19	
Mechanical Tim stant	e Con-	ms	3.9	3.0	2.	9	2.1	2.0	
Thermal Resista Heat Sink)	ance (with	K/W	2.62	1.17	0.	79	0.60	0.44	
Thermal Resista out Heat Sink)	nce (with-	K/W	11.3	4.43	2.55		2.64	1.49	
Magnetic Attrac	tion	Ν	200	200 630 12		1260		4240	
Combined Magr	netic Way, S	SGLFM2-		300	DDA		45 000 A		
Combined Seria	al Converte	r Unit,	nit, 628 629 630		30	631	632		
Applicable SERVOPACKs	SGD7S- SGD7W-		1R6A 1R6A	1R6A 1R6A	3R8A _	2R8A 2R8A	5R5A 5R5A	180A _	120A _

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.


Heat Sink Dimensions

+ 150 mm \times 100 mm \times 10 mm: SGLFW2-30A070A

+ 254 mm \times 254 mm \times 25 mm: SGLFW2-30A120A and -30A230A

+ 400 mm \times 500 mm \times 10 mm: SGLFW2-45A200A and -45A380A

4.2.2 Ratings

- Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

4.2.3 Ratings

4.2.3 Ratings

Linear Servomotor Moving Coil			90	1DA	
Mode	SGLFW2-		200Aロ	380Aロ	380Aロ
Rated Motor Speed (Reference Speed during Speed Control) ^{*1}		/s	4.0	4.0	2.0
Maximum Spee	ed ^{*1} m/	/s	4.0	4.0	2.5
Rated Force ^{*1, *}	² N		560	1120	1680
Maximum Force	e ^{*1} N		1680	3360	5040
Rated Current*1	l Ar	rms	7.2	14.4	14.4
Maximum Curre	ent ^{*1} Ar	rms	26.9	53.9	53.9
Moving Coil Ma	lss kg	3	5.3	10.1	14.6
Force Constant	N/	/Arms	82.0	82.0	123
BEMF Constant		rms/ n/s)/ nase	27.3	27.3	41.0
Motor Constant	t N/	$/\sqrt{W}$	58.1	82.2	105
Electrical Time	Constant m	IS	24	23	25
Mechanical Tim Constant	ne m:	IS	1.6	1.5	1.3
Thermal Resista (with Heat Sink)	K/	/W	0.45	0.21	0.18
Thermal Resista (without Heat S		/W	1.81	1.03	0.79
Magnetic Attrac	tion N		4240	8480	12700
Combined Mag	netic Way, SGL	LFM2-	90 00 A		1DDDDA
Combined Seria		nit,	633	634	649
Applicable	SGD7S-		120A	200A	200A
SERVOPACKs	SGD7W-		_	-	-

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

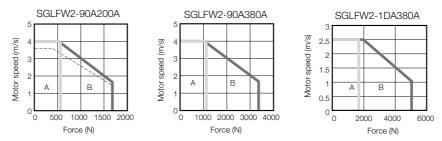
*2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimen-

sions given below.

Heat Sink Dimensions

• 400 mm × 500 mm × 10 mm: SGLFW2-90A200A

• 609 mm × 762 mm × 10 mm: SGLFW2-90A380A

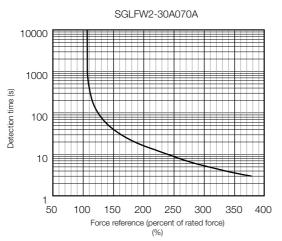

• 900 mm × 762 mm × 10 mm: SGLFW2-1DA380A

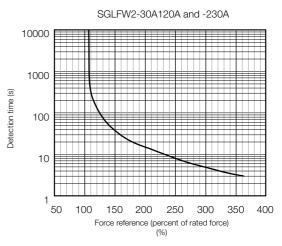
4.2.3 Ratings

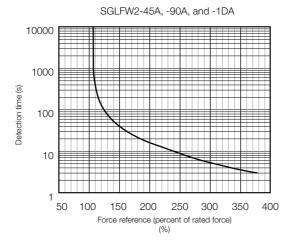
Force-Motor Speed Characteristics

A : Continuous duty zone ——— (solid lines): With three-phase 200-V input

 \blacksquare : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input




Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.


- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in ◆ *Force-Motor Speed Characteristics on* page 4–7 and on page 4–9.

4.3.1 Specifications

4.3 Ratings and Specifications: SGLFW Models

4.3.1 Specifications

Linear Serv	Linear Servomotor Moving Coil Model)A	35A		50A		12	ZA		
	SGLFW-	090A	120A	120A	230A	200B	380B	200B	380B		
Time Rating		Continuous									
Thermal Class					E	3					
Insulation Resi	stance			500) VDC, ⁻	10 M Ω r	nin.				
Withstand Volt	age			1,50	0 VAC	for 1 mi	nute				
Excitation				P	ermaner	nt magn	et				
Cooling Metho	d				Self-c	cooled					
Protective Stru	icture				IP	00					
	Surrounding Air Temperature	0°C to 40°C (with no freezing)									
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)							on)		
Environmen- tal Conditions	Installation Site	 Must be indoors and free of corrosive and explosive gases Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 							0		
Shock	Impact Acceleration Rate	196 m/s ²									
Resistance	Number of Impacts	2 times									
Vibration Resistance	Vibration Acceleration Rate 49 m/s ² (the vibration resistance in three directions, vertice side-to-side, and front-to-back)							ertical,			

4.3.2 Ratings

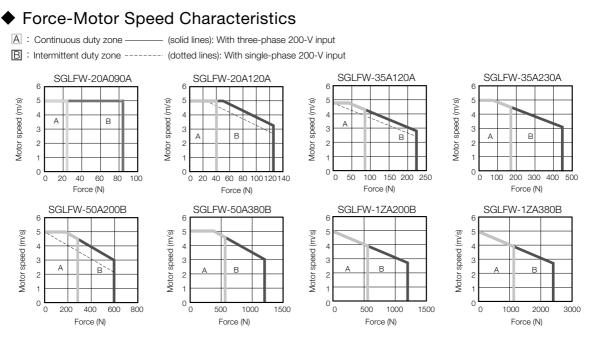
4.3.2 Ratings

Linear Servomotor Moving Coil Model SGLFW-		20)A	35	5A	50A		1ZA		
		090A	120A	120A	230A	200B	380B	200B	380B	
Rated Motor Sp (Reference Spe Speed Control)	ed during	m/s	5.0	3.5	2.5	3.0	1.5	1.5	1.5	1.5
Maximum Spee	ed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	5.0	4.9	4.9
Rated Force ^{*1, *}	2	N	25	40	80	160	280	560	560	1120
Maximum Force	e*1	N	86	125	220	440	600	1200	1200	2400
Rated Current*1	1	Arms	0.70	0.80	1.4	2.8	5.0	10.0	8.7	17.5
Maximum Curre	ent ^{*1}	Arms	3.0	2.9	4.4	8.8	12.4	25.0	21.6	43.6
Moving Coil Ma	ISS	kg	0.70	0.90	1.3	2.3	3.5	6.9	6.4	12
Force Constant	Force Constant		36.0	54.0	62.4	62.4	60.2	60.2	69.0	69.0
BEMF Constan	t	Vrms/(m/s)/ phase	12.0	18.0	20.8	20.8	20.1	20.1	23.0	23.0
Motor Constant	t	N/ _√ W	7.95	9.81	14.4	20.4	34.3	48.5	52.4	74.0
Electrical Time	Constant	ms	3.2	3.3	3.6	3.6	16	16	18	18
Mechanical Tim	ne Constant	ms	11	9.4	6.3	5.5	3.0	2.9	2.3	2.1
Thermal Resista (with Heat Sink)		K/W	4.35	3.19	1.57	0.96	0.56	0.38	0.47	0.20
Thermal Resista (without Heat S		K/W	7.69	5.02	4.10	1.94	1.65	0.95	1.30	0.73
Magnetic Attrac	ction	N	310	460	810	1590	1650	3260	3300	6520
Combined Mag	netic Way, SGL	FM-	2000		3500		5000		1ZDD	
	Combined Serial Converter Unit, JZDP-DDD-		017	018	019	020	181	182	183	184
Applicable	SGD7S-		1R6A	1R6A	1R6A	3R8A	5R5A	120A	120A	200A
SERVOPACKs	SGD7W-		1R6A	1R6A	1R6A	5R5A	5R5A	_	_	_

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.

Heat Sink Dimensions

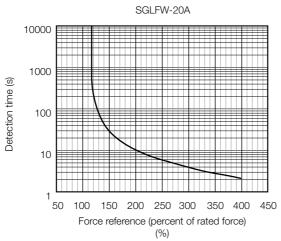

+ 125 mm \times 125 mm \times 13 mm: SGLFW-20A090A and -20A120A

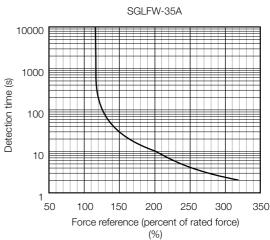
+ 254 mm \times 254 mm \times 25 mm: SGLFW-35A120A and -35A230A

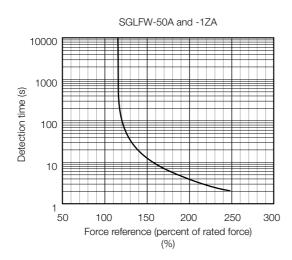
+ 400 mm \times 500 mm \times 40 mm: SGLFW-50A200B, 50A380B, and -1ZA200B

+ 600 mm \times 762 mm \times 50 mm: SGLFW-1ZA380B

4.3.2 Ratings

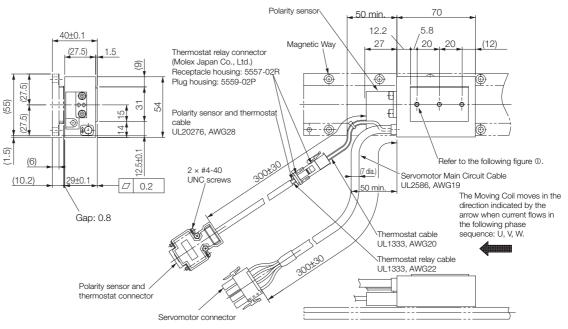


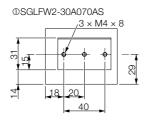

- Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.


4.3.2 Ratings

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

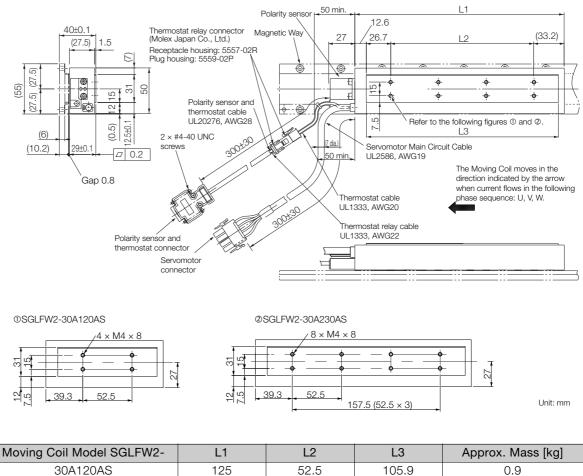



Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *◆ Force-Motor Speed Characteristics* on page 4-12.

4.4 External Dimensions

4.4.1 SGLFW2-30

Moving Coil with Polarity Sensor: SGLFW2-30A070AS



Approx. mass: 0.5 kg Unit: mm

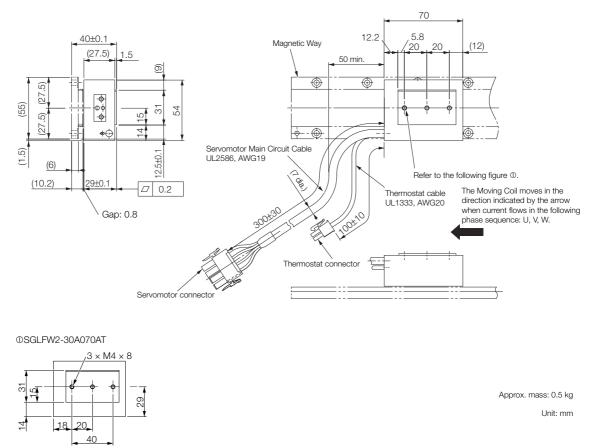
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

■ Moving Coils with Polarity Sensors: SGLFW2-30 and -45 on page 4-39

157.5

210.9

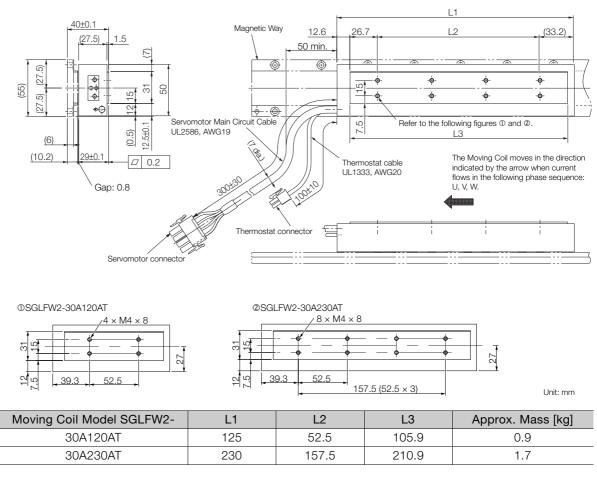
Moving Coils with Polarity Sensors: SGLFW2-30ADDDAS


230

₩ Moving Coils with Polarity Sensors: SGLFW2-30 and -45 on page 4-39

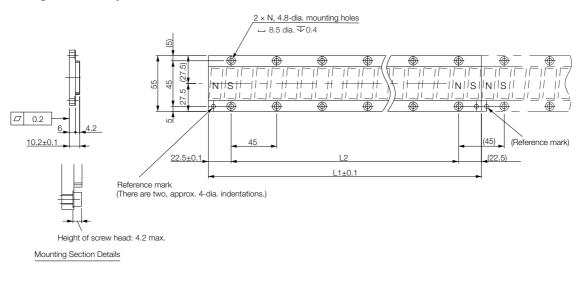
30A230AS

tor Main Circuit Cable.


1.7

Moving Coil without Polarity Sensor: SGLFW2-30A070AT

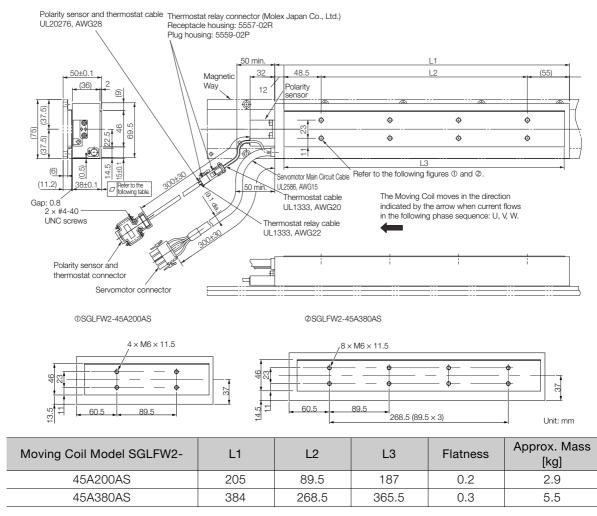
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.


☞ ♦ Moving Coils without Polarity Sensors: SGLFW2-30 and -45 on page 4-40

Moving Coils without Polarity Sensors: SGLFW2-30ADDDAT

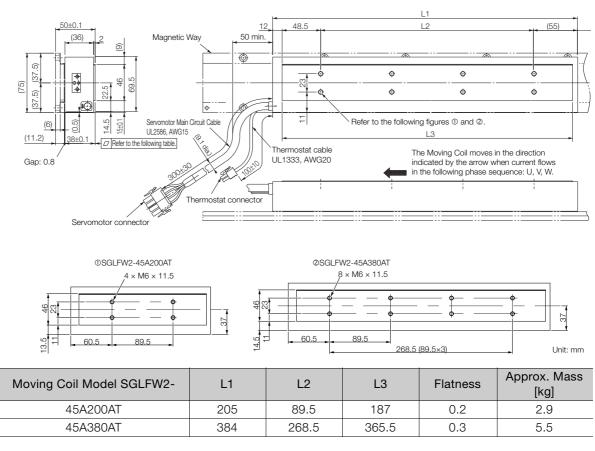
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

◆ Magnetic Ways: SGLFM2-30□□□A


Unit: mm

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

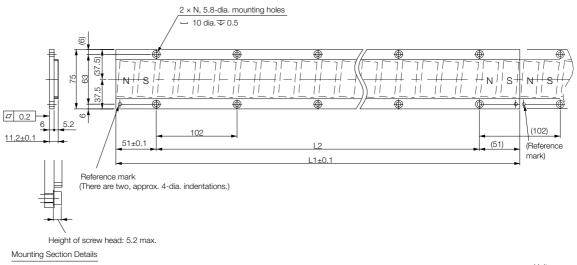
Magnetic Way Model SGLFM2-	L1 ± 0.1	L2	Ν	Approx. Mass [kg]
30270A	270	225 (45 × 5)	6	0.9
30450A	450	405 (45 × 9)	10	1.5
30630A	630	585 (45 × 13)	14	2.0


4.4.2 SGLFW2-45

◆ Moving Coils with Polarity Sensors: SGLFW2-45A□□□AS

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

Moving Coils with Polarity Sensors: SGLFW2-30 and -45 on page 4-39
 A

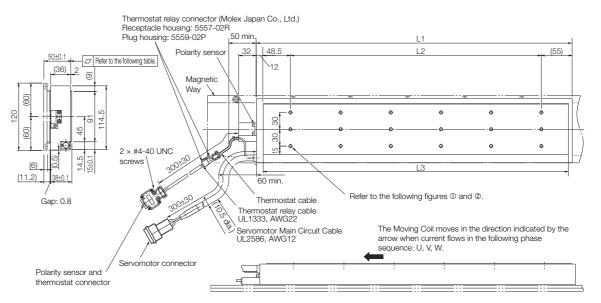


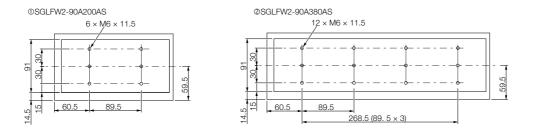
◆ Moving Coils without Polarity Sensors: SGLFW2-45A□□□AT

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

→ Moving Coils without Polarity Sensors: SGLFW2-30 and -45 on page 4-40

◆ Magnetic Ways: SGLFM2-45□□□A

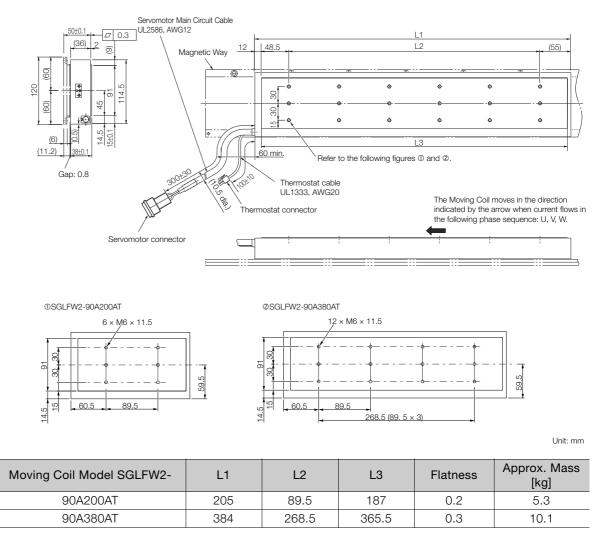

Unit: mm


Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM2-	L1 ± 0.1	L2	N	Approx. Mass [kg]
45306A	306	204 (102 × 2)	3	1.5
45510A	510	408 (102 × 4)	5	2.5
45714A	714	612 (102 × 6)	7	3.4

4.4.3 SGLFW2-90

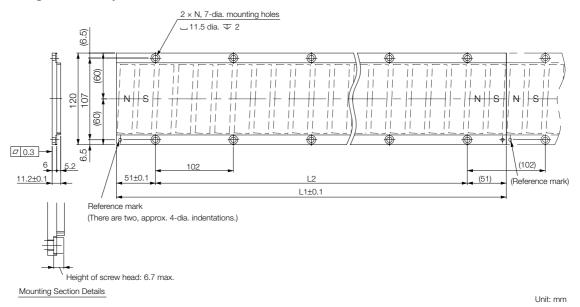
◆ Moving Coils with Polarity Sensors: SGLFW2-90A□□□AS


Unit: mm

Moving Coil Model SGLFW2-	L1	L2	L3	Flatness	Approx. Mass [kg]
90A200AS	205	89.5	187	0.2	5.3
90A380AS	384	268.5	365.5	0.3	10.1

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

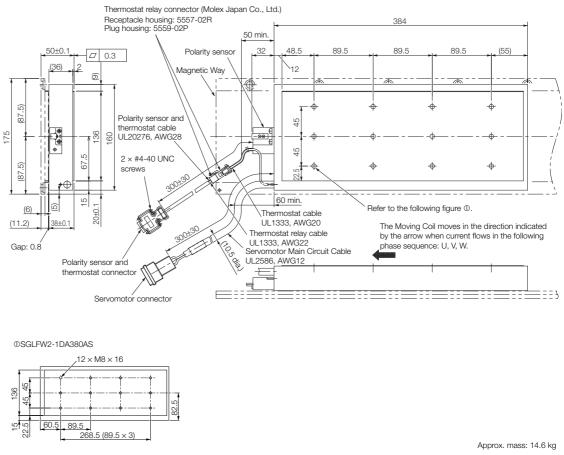
■ Moving Coils with Polarity Sensors: SGLFW2-90 and -1D on page 4-41



Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

₩ Moving Coils without Polarity Sensors: SGLFW2-90 and -1D on page 4-42

◆ Magnetic Ways: SGLFM2-90□□□A

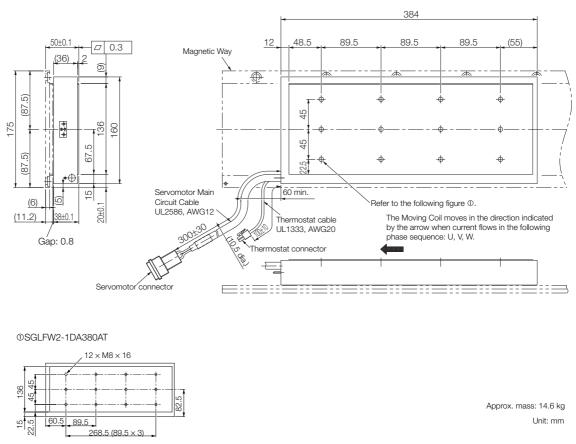


Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM2-	L1±0.1	L2	Ν	Approx. Mass [kg]
90306A	306	204 (102 × 2)	3	2.6
90510A	510	408 (102 × 4)	5	4.2
90714A	714	612 (102 × 6)	7	5.9

4.4.4 SGLFW2-1D

4.4.4 SGLFW2-1D

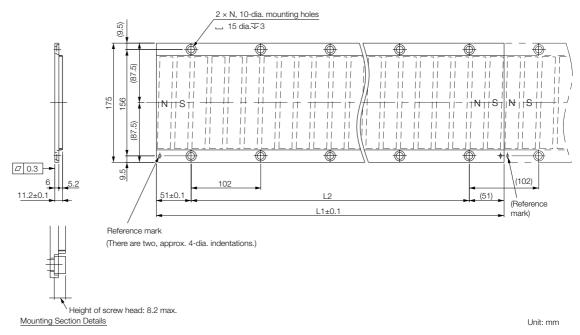

Moving Coil with Polarity Sensor: SGLFW2-1DA380AS

Unit: mm

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

■ Moving Coils with Polarity Sensors: SGLFW2-90 and -1D on page 4-41

4.4.4 SGLFW2-1D

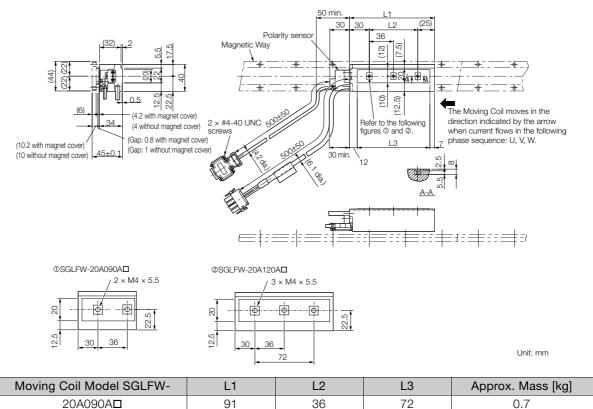

Moving Coil without Polarity Sensor: SGLFW2-1DA380AT

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ♦ Moving Coils without Polarity Sensors: SGLFW2-90 and -1D on page 4-42

4.4.4 SGLFW2-1D

◆ Magnetic Ways: SGLFM2-1D□□□A


Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM2-	L1±0.1	L2	Ν	Approx. Mass [kg]
1D306A	306	204 (102 × 2)	3	3.7
1D510A	510	408 (102 × 4)	5	6.2
1D714A	714	612 (102 × 6)	7	8.6

4.4.5 SGLFW-20

4.4.5 SGLFW-20

◆ Moving Coils: SGLFW-20A□□□A□

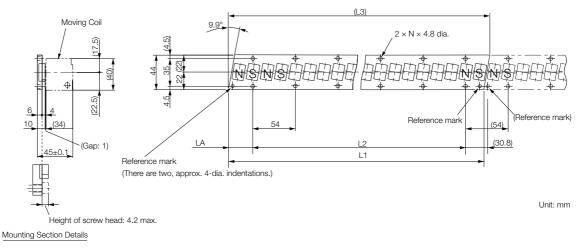
Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

127

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

72

108

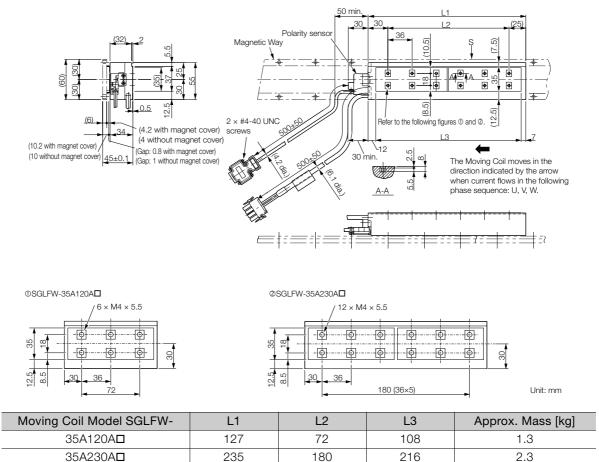

0.9

SGLFW-20A□□□A□ and -35A□□□A□ Moving Coils on page 4-43

20A120AD

4.4.5 SGLFW-20

◆ Magnetic Ways: SGLFM-20□□□A


Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	Ν	Approx. Mass [kg]
20324A	324 -0.1	270 (54 × 5)	(331.6)	30.8 0.2	6	0.9
20540A	540 -0.1	486 (54 × 9)	(547.6)	30.8 0.2	10	1.4
20756A	756 -0.1	702 (54 × 13)	(763.6)	30.8 0.2	14	2

4.4.6 SGLFW-35

4.4.6 SGLFW-35

◆ Moving Coils: SGLFW-35A□□□A□

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

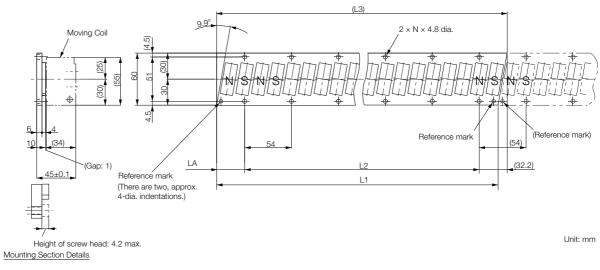
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLFW-20A□□□A□ and -35A□□□A□ Moving Coils on page 4-43

50 min L1 L2 30 30 Polarity sense 36 (32 (10.5) Magnetic Way ŝ ¢ TΔ • ¢ . • \widehat{G} \widehat{G} Refer to the following figures \mathbb{O} and \mathbb{Q} . (6) (4.2 with magnet cover) 2 × #4-40 UNC L3 (4 without magnet cover) screws 12 4 (Gap: 0.8 with magnet cover) 2.5 The Moving Coil moves in the direction indicated by the arrow when current flows in the following phase sequence: U, V, W. (10.2 with magnet cover) 30 min 45±0.1 (Gap: 1 without magnet cover (10 without magnet cover) A-A ĒĒ≀ ©SGLFW-35A120A□D @SGLFW-35A230A□D $6 \times M4 \times 5.5$ 12 × M4 × 5.5 -\$ -**(** -\$ -**(** -**(** -@ 35 कि 8 8 12.51 12.5 8.5 36 36 180 (36×5)

◆ Moving Coils: SGLFW-35A□□□A□D

72 →	÷	<pre></pre>	180 (36×5)	→ Unit: mm
Moving Coil Model SGLFW-	L1	L2	L3	Approx. Mass [kg]
35A120ADD	127	72	108	1.3
35A230ADD	235	180	216	2.3

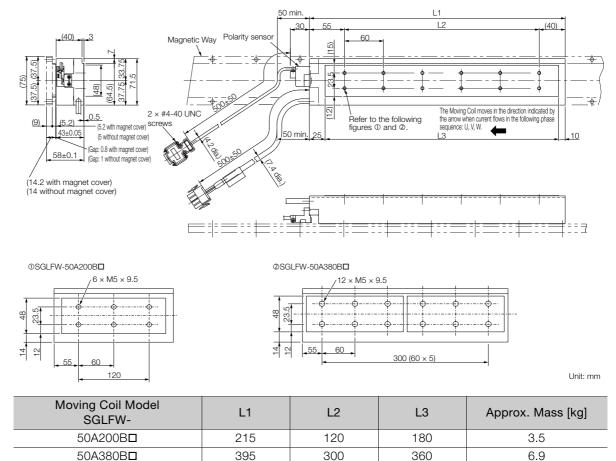

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils on page 4-44

4.4.6 SGLFW-35

◆ Magnetic Ways: SGLFM-35□□□A

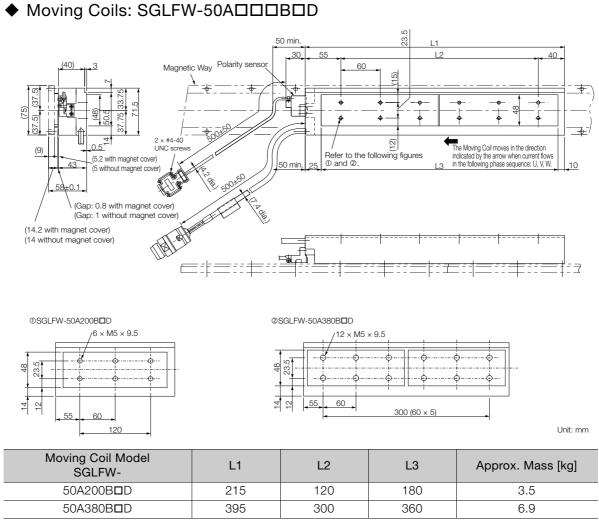

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	Ν	Approx. Mass [kg]
35324A	324 -0.1	270 (54 × 5)	(334.4)	32.2 .0.2	6	1.2
35540A	540 -0.1	486 (54 × 9)	(550.4)	32.2 .0.2	10	2
35756A	756 -0.1	702 (54 × 13)	(766.4)	32.2 0	14	2.9

4.4.7 SGLFW-50

4.4.7 SGLFW-50

◆ Moving Coils: SGLFW-50A□□□B□

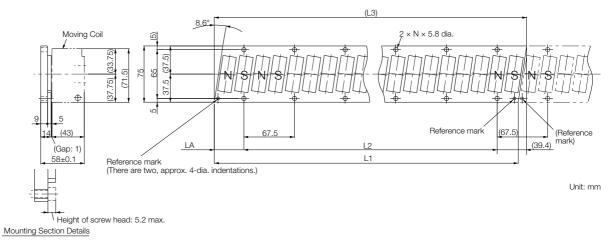


Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ♦ SGLFW-50A □□□B □ Moving Coils on page 4-45

4.4.7 SGLFW-50

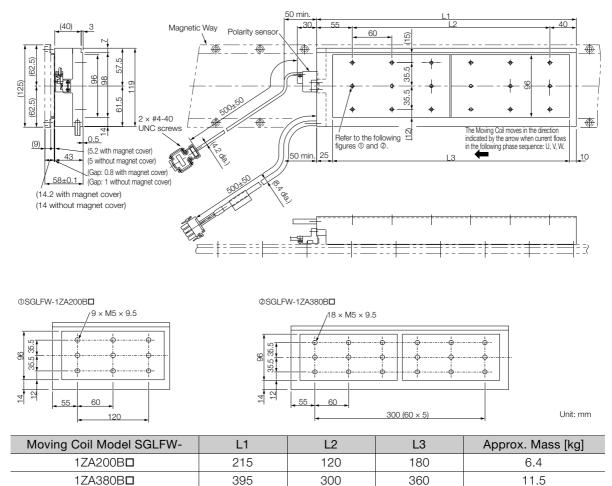

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils on page 4-44

4.4.7 SGLFW-50

◆ Magnetic Ways: SGLFM-50□□□A

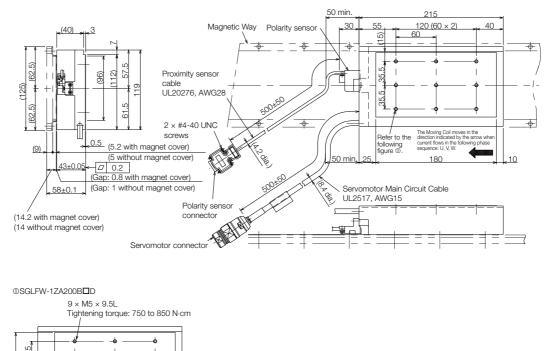

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	Ν	Approx. Mass [kg]
50405A	405 -0.1	337.5 (67.5 × 5)	(416.3)	39.4 0.2	6	2.8
50675A	675 -0.1	607.5 (67.5 × 9)	(686.3)	39.4 .0.2	10	4.6
50945A	945 -0.1	877.5 (67.5 × 13)	(956.3)	39.4 0	14	6.5

4.4.8 SGLFW-1Z

4.4.8 SGLFW-1Z

◆ Moving Coils: SGLFW-1ZA□□□B□



Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLFW-1ZA□□□B□ Moving Coils on page 4-46

Moving Coils: SGLFW-1ZA200BDD

Approx. mass: 6.4 kg Unit: mm

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

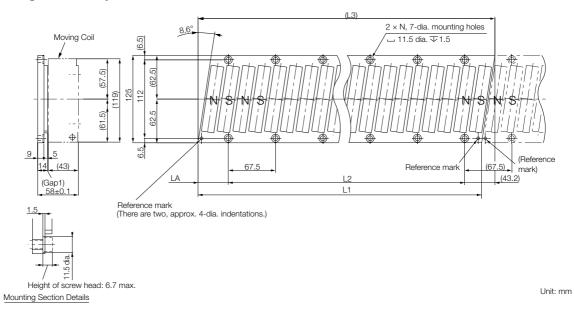
Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ◆ SGLFW-1ZA200B □D Moving Coils on page 4-47

96

4

N


55

60

120

4.4.8 SGLFW-1Z

◆ Magnetic Ways: SGLFM-1Z□□□A

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	N	Approx. Mass [kg]
1Z405A	405 -0.3	337.5 (67.5 × 5)	(423.9)	43.2 0.2	6	5
1Z675A	675 -0.1	607.5 (67.5 × 9)	(693.9)	43.2 0	10	8.3
1Z945A	945 -0.3	877.5 (67.5 × 13)	(963.9)	43.2 -0.2	14	12

Moving Coils with Polarity Sensors: SGLFW2-30 and -45

Servomotor Connector

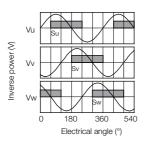
Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3

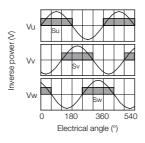
Polarity Sensor and Thermostat Connector

Pin connector: 17JE-23090-02 (D8C) -CG From DDK Ltd.

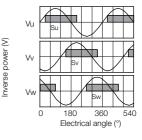
Mating Connector Socket connector: 17JE-13090-02 (D8C) A-CG Studs: 17L-002C or 17L-002C1


Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	FG	Green

Pin	Signal
1	+5 V (thermal protector) +5 V (power supply)
2	Su
3	Sv
4	Sw
5	0 V (power supply)
6	
7	Not used
8	
9	Thermal protector


• Polarity Sensor Output Signal

The following figures show the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.



SGLFW2-30A120AS SGLFW2-30A230AS

SGLFW2-45A200AS SGLFW2-45A380AS

Moving Coils without Polarity Sensors: SGLFW2-30 and -45

Servomotor Connector

Plug: 350779-1

Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	FG	Green

Thermostat Connector

Receptacle housing: 5557-02R Terminals: 5556T or 5556TL From Molex Japan Co., Ltd.

Mating Connector Plug housing: 5559-02P Terminals: 5558T or 5558TL

Pin	Signal
1	Thermal protector
2	Thermal protector

Moving Coils with Polarity Sensors: SGLFW2-90 and -1D

Servomotor Connector

B2 B1. 활동 z K Α2 Δ1

Tab housing: 1-917808-2 Contacts: 917803-2 (A1, A2, and B1) 84695-1 (B2) From Tyco Electronics Japan G.K.

Mating Connector Receptacle housing: 1-917807-2 Contacts: 179956-2

Polarity Sensor and Thermostat Connector

Pin connector: 17JE-23090-02 (D8C) -CG From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) A-CG Studs: 17L-002C or 17L-002C1

Pin	Signal	Wire Color
A1	Phase U	Red
A2	Phase V	White
B1	Phase W	Black
B2	FG	Green

Pin	Signal
1	+5 V (thermal protector) +5 V (power supply)
2	Su
3	Sv
4	Sw
5	0 V (power supply)
6	
7	Not used
8	
9	Thermal protector

• Polarity Sensor Output Signal

Moving Coils without Polarity Sensors: SGLFW2-90 and -1D

Servomotor Connector

Tab housing: 1-917808-2 Contacts: 917803-2 (A1, A2, and B1) 84695-1 (B2) From Tyco Electronics Japan G.K.

Mating Connector Receptacle housing: 1-917807-2 Contacts: 179956-2

Pin	Signal	Wire Color
A1	Phase U	Red
A2	Phase V	White
B1	Phase W	Black
B2	FG	Green

Thermostat Connector

Receptacle housing: 5557-02R Terminals: 5556T or 5556TL From Molex Japan Co., Ltd.

Mating Connector Plug housing: 5559-02P Terminals: 5558T or 5558TL

Pin	Signal	
1	Thermal protector	
2	Thermal protector	

◆ SGLFW-20A□□□A□ and -35A□□□A□ Moving Coils

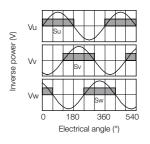
Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	FG	Green

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

PinSignal1+5 V (thermal protector) +5 V (power supply)2Su3Sv4Sw50 V (power supply)6Not used7Not used89		
+5 V (power supply) 2 Su 3 Sv 4 Sw 5 0 V (power supply) 6 7 8	Pin	Signal
3 Sv 4 Sw 5 0 V (power supply) 6 7 8 Not used	1	
4 Sw 5 0 V (power supply) 6 7 8 0	2	Su
50 V (power supply)677Not used8	3	Sv
6 7 Not used 8	4	Sw
7 Not used 8	5	0 V (power supply)
8	6	
	7	Not used
9 Thermal protector	8	
	9	Thermal protector

• Polarity Sensor Output Signal

♦ SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils

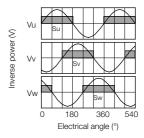
Servomotor Connector

Extension: ARRA06AMRPN182 Pins: 021.279.1020 From Interconnectron GmbH

Mating Connector Plug: APRA06BFRDN170 Socket: 020.105.1020

Pin	Signal
1	Phase U
2	Phase V
4	Phase W
5	Not used
6	Not used
	Ground

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal

♦ SGLFW-50A□□B□ Moving Coils

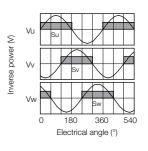
Servomotor Connector

Plug: 350779-1

Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	FG	Green

Pin	Signal	
1	+5 V (thermal protector) +5 V (power supply)	
2	Su	
3	Sv	
4	Sw	
5	0 V (power supply)	
6		
7	Not used	
8		
9	Thermal protector	

• Polarity Sensor Output Signal

◆ SGLFW-1ZA□□□B□ Moving Coils

Servomotor Connector

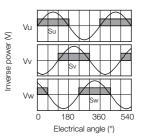
Plug: 350779-1

Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

Pin	Signal	Wire Color	
1	Phase U	Red	
2	Phase V	White	
3	Phase W	Black	
4	FG	Green	

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal

◆ SGLFW-1ZA200B□D Moving Coils

Servomotor Connector

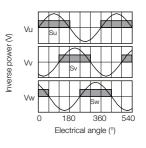
Extension: SROC06JMSCN169 Pins: 021.423.1020

From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020

Pin	Signal	
1	Phase U	
2	Phase V	
3	Phase W	
4	Not used	
5	Not used	
6	Ground	

• Polarity Sensor Connector

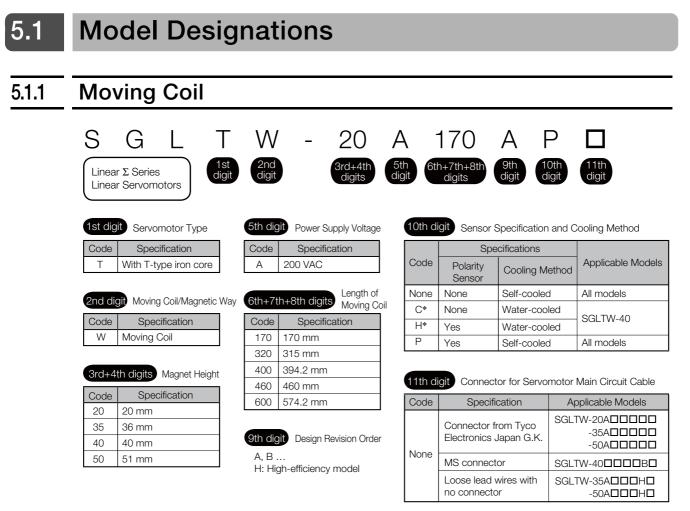


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

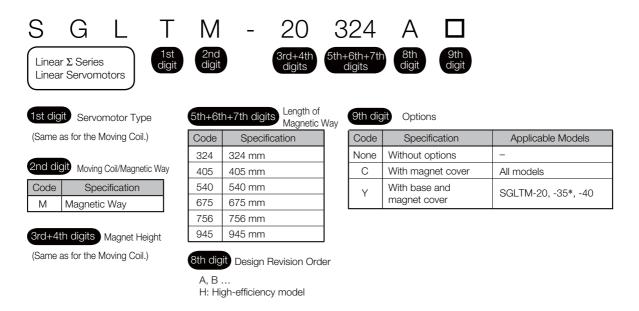
Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	
2	Phase U	7	Not used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal


Specifications, Ratings, and External Dimensions of SGLT Servomotors

5

This chapter describes how to interpret the model numbers of SGLT Servomotors and gives their specifications, ratings, and external dimensions.


5.1	Mode	I Designations5-2
	5.1.1 5.1.2 5.1.3	Moving Coil5-2Magnetic Way5-2Precautions on Moving Coils with PolaritySensors5-3
5.2	Rating	gs and Specifications5-4
	5.2.1 5.2.2 5.2.3 5.2.4	Specifications5-4Ratings5-5Force-Motor Speed Characteristics5-7Servomotor Overload Protection Characteristics5-8
5.3	Extern	nal Dimensions5-9
	5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6	SGLTW-20: Standard Models.5-9SGLTW-35: Standard Models.5-12SGLTW-35□□□□H□: High-efficiency Models.5-15SGLTW-40: Standard Models.5-17SGLTW-50: High-efficiency Models.5-20Connector Specifications.5-22

5.1.1 Moving Coil

- * Contact your Yaskawa representative for the characteristics, dimensions, and other details on Servomotors with these specifications.
- Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

5.1.2 Magnetic Way

5.1.3 Precautions on Moving Coils with Polarity Sensors

* The SGLTM-35DDDH (high-efficiency models) do not support this specification.

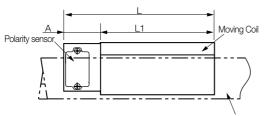
Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

5.1.3 Precautions on Moving Coils with Polarity Sensors

Note S

When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, consider the total length of the Moving Coil and the polarity sensor. Refer to the following table.

Correct Installation


Incorrect Installation

Magnetic Way

Edge of Magnetic Way

 Total Length of Moving Coil with Polarity Sensor

Moving Coil Model SGLTW-	Length of Moving Coil, L1 (mm)	Length of Polarity Sensor, A (mm)	Total Length, L (mm)
20A170AP	170		204
20A320AP	315	34	349
20A460AP	460		494
35A170AP	170		204
35A320AP	315	34	349
35A460AP	460		494
35A170HP	170	34	204
35A320HP	315	34	349
50A170HP	170	34	204
50A320HP	315	34	349
40A400BH D 40A400BP D	394.2	26	420.2

5.2.1 Specifications

5.2 Ratings and Specifications

5.2.1 Specifications

Linear	Servomotor			Stan	dard Mo	odels			Higl	h-efficie	ncy Mo	dels		
Moving	g Coil Model		20A			35A		40A	35	5A	50	DA		
S	GLTW-	170A	320A	460A	170A	320A	460A	400B	170H	320H	170H	320H		
Time Rat	ing		Continuous											
Thermal	Class	В												
Insulation	n Resistance					500 VD	C, 10 N	1 Ω min.						
Withstan	d Voltage					1,500 V	AC for 1	minute						
Excitatio	n	Permanent magnet												
Cooling I	Method		Self-cooled											
Protectiv	e Structure	IP00												
	Surrounding Air Tempera- ture		0°C to 40°C (with no freezing)											
Environ- mental	Surrounding Air Humidity		20% to 80% relative humidity (with no condensation)											
Condi- tions	Installation Site	MustMustMust	be well facilitat have a	-ventilat e inspec n altitud	ed and ction and e of 1,0	corrosiv free of c d cleanii 00 m or netic field	lust and ng. less.							
Shock Resis-	Impact Acceleration Rate					-	96 m/s	2						
tance	Number of Impacts	of 2 times												
Vibra- tion Resis- tance	Vibration Acceleration Rate	(the v	vibration	resistan	ce in thr	ee direc	49 m/s ² tions, ve	rtical, sid	de-to-sic	de, and f	ront-to-	back)		

5.2.2 Ratings

5.2.2 Ratings

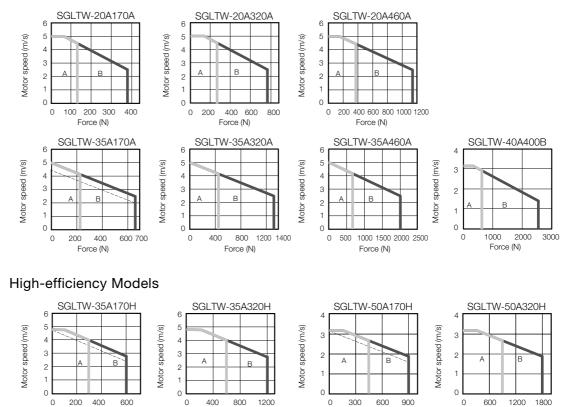
Linear Serv	omotor			Stan	dard Mo	odels			Hiał	n-efficie	ncy Mo	dels
Moving Coi			20A		35A 40A				35A 50A			
SGLTV		170A	320A	460A	170A	320A	460A	400B	170H	320H	170H	320H
Rated Motor S (Reference Sp during Speed	beed	3.0	3.0	3.0	2.5	2.5	2.5	1.5	2.5	2.0	2.0	2.0
Maximum Speed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	5.0	3.1	4.8	4.8	3.2	3.1
Rated Force ^{*1, *2}	Ν	130	250	380	220	440	670	670	300	600	450	900
Maximum Force ^{*1}	Ν	380	760	1140	660	1320	2000	2600	600	1200	900	1800
Rated Current ^{*1}	Arms	2.3	4.4	6.7	3.5	7.0	10.7	7.3	5.1	10.1	5.1	10.2
Maximum Current ^{*1}	Arms	7.7	15.4	23.2	12.1	24.2	36.7	39.4	11.9	23.9	11.8	23.6
Moving Coil Mass	kg	2.5	4.6	6.7	3.7	6.8	10	15	4.9	8.8	6.0	11
Force Constant	N/Arms	61.0	61.0	61.0	67.5	67.5	67.5	99.1	64.0	64.0	95.2	95.2
BEMF Constant	Vrms/ (m/s)/ phase	20.3	20.3	20.3	22.5	22.5	22.5	33.0	21.3	21.3	31.7	31.7
Motor Constant	N/\sqrt{W}	18.7	26.5	32.3	26.7	37.5	46.4	61.4	37.4	52.9	48.6	68.7
Electrical Time Constant	ms	5.9	5.9	5.9	6.9	6.8	6.9	15	15	16	16	17
Mechanical Time Constant	ms	7.1	6.6	6.4	5.2	4.8	4.6	4.0	3.5	3.1	2.5	2.4
Thermal Resistance (with Heat Sink)	K/W	1.01	0.49	0.38	0.76	0.44	0.32	0.24	0.76	0.40	0.61	0.30
Thermal Resistance (without Heat Sink)	K/W	1.82	1.11	0.74	1.26	0.95	0.61	0.57	1.26	0.83	0.97	0.80
Magnetic Attraction ^{*3}	N	0	0	0	0	0	0	0	0	0	0	0
Magnetic Attraction on One Side ^{*4}	N	800	1590	2380	1400	2780	4170	3950	1400	2780	2000	3980
Way, SGLTM-	Combined Magnetic Way, SGLTM-				35	5000A			3500	IOHO	50 00 HD	
Combined Ser Converter Unit JZDP-	,	011	012	013	014	015	016	185	105	106	108	109
Applicable	SGD7S-	3R8A	7R6A	120A	5R5A	120A	180A	180A	5R5A	120A	5R5A	120A
SERVO- PACKs	SGD7W-	5R5A	7R6A	-	5R5A	-	-	-	5R5A	-	5R5A	-

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

^{*2.} The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.

5.2.2 Ratings

- Heat Sink Dimensions
 - + 254 mm \times 254 mm \times 25 mm: SGLTW-20A170A and -35A170A
 - + 400 mm \times 500 mm \times 40 mm: SGLTW-20A320A, -20A460A, -35A170H, -35A320A, -35A320H, -35A460A, and -50A170H
 - + 609 mm \times 762 mm \times 50 mm: SGLTW-40A400B and -50A320H
- *3. The unbalanced magnetic gap that results from the Moving Coil installation condition causes a magnetic attraction on the Moving Coil.
- *4. The value that is given is the magnetic attraction that is generated on one side of the Magnetic Way.


5.2.3 Force-Motor Speed Characteristics

A : Continuous duty zone — (solid lines): With three-phase 200-V input

B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input

Standard Models

Force (N)

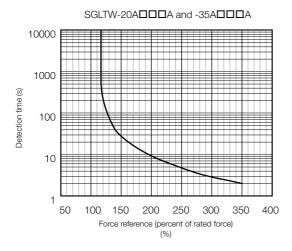
Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

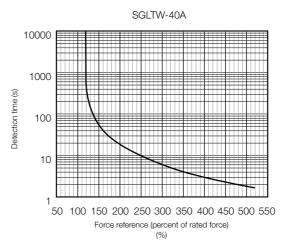
2. The characteristics in the intermittent duty zone depend on the power supply voltage.

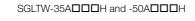
Force (N)

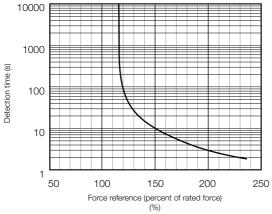
3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.

Force (N)

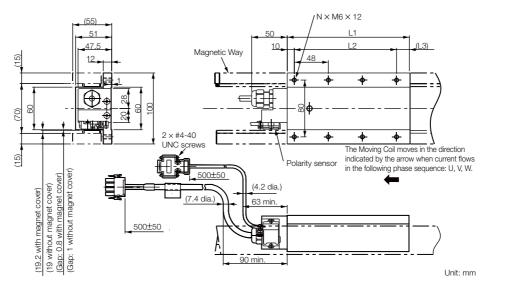

4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.


Force (N)


5.2.4 Servomotor Overload Protection Characteristics


5.2.4 Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

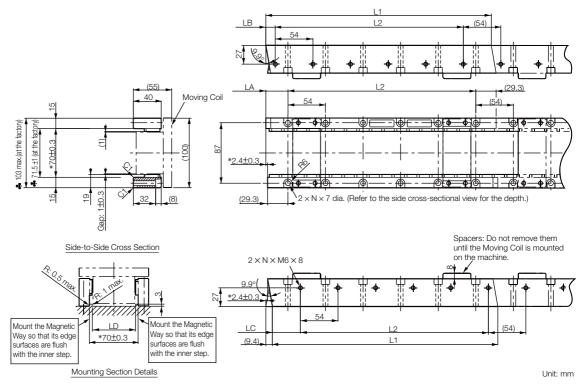

Note: The above overload protection characteristics do mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *5.2.3 Force-Motor Speed Characteristics* on page 5-7.

5.3.1 SGLTW-20: Standard Models

5.3 External Dimensions

5.3.1 SGLTW-20: Standard Models

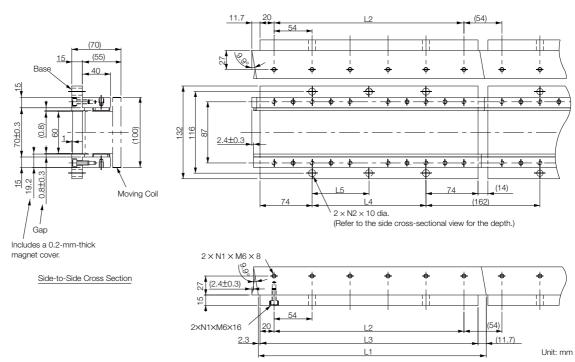
◆ Moving Coils: SGLTW-20A□□□A□


Moving Coil Model SGLTW-	L1	L1 L2		Ν	Approx. Mass [kg]
20A170Aロ	170	144 (48 × 3)	(16)	8	2.5
20A320Aロ	315	288 (48 × 6)	(17)	14	4.6
20A460Aロ	460	432 (48 × 9)	(18)	20	6.7

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-20A□□□A□ and -35A□□□□A□ Moving Coils on page 5-22

5.3.1 SGLTW-20: Standard Models


◆ Magnetic Ways: SGLTM-20□□□A

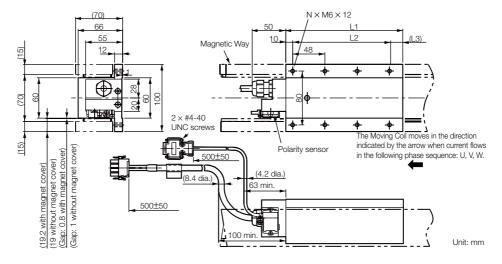
- Note: 1.Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.
 - 2. More than one Magnetic Way can be connected.
 - 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
 - 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
20324A	324 -0.3	270 (54 × 5)	31.7 0-0.2	13.7 .0.2	40.3 0.0	62 +0.6	6	3.4
20540A	540 -0.3	486 (54 × 9)	31.7 0-0.2	13.7 .0.2	40.3 0.0	62 +0.6	10	5.7
20756A	756 -0.1	702 (54 × 13)	31.7 ⁰ -0.2	13.7 0-0.2	40.3 0-0.2	$62^{+0.6}_{0}$	14	7.9

5.3.1 SGLTW-20: Standard Models

◆ Magnetic Ways with Bases: SGLTM-20□□□AY

Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

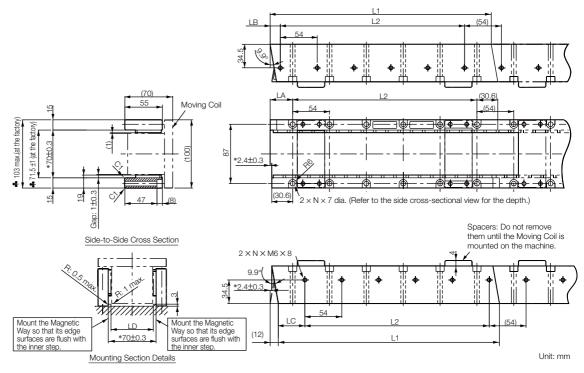

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
20324AY	324 -0.3	270	310	162	162	6	2	5.1
20540AY	540 -0.1	486	526	378	189	10	3	8.5
20756AY	756 -0.1	702	742	594	198	14	4	12

5

5.3.2 SGLTW-35: Standard Models

5.3.2 SGLTW-35: Standard Models

◆ Moving Coils: SGLTW-35A□□□A□


Moving Coil Model SGLTW-	L1	L1 L2		Ν	Approx. Mass [kg]
35A170A	170	144 (48 × 3)	(16)	8	3.7
35A320Aロ	315	288 (48 × 6)	(17)	14	6.8
35A460A□	460	432 (48 × 9)	(18)	20	10

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-20A□□□A□ and -35A□□□A□ Moving Coils on page 5-22

5.3.2 SGLTW-35: Standard Models

◆ Magnetic Ways: SGLTM-35□□□A□

Note: 1.Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

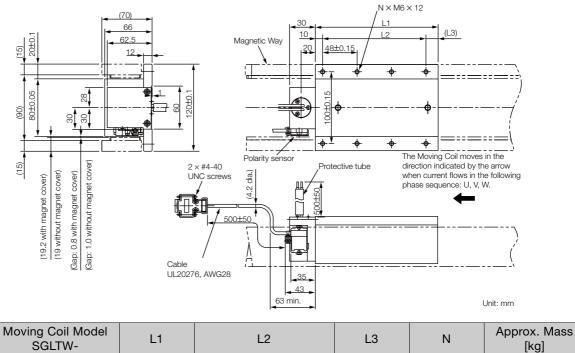
- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
35324A	324 -0.3	270 (54 × 5)	33 .0.2	15 -0.2	39 .0.2	62 +0.6	6	4.8
35540A□	540 -0.3	486 (54 × 9)	33 .0.2	15 .0.2	39 .0.2	62 +0.6	10	8
35756A□	756 -0.1	702 (54 × 13)	33 .0.2	15 .0.2	39 .0.2	62 +0.6	14	11

5.3.2 SGLTW-35: Standard Models

13 20 (54) 54 (85) 34.5 Y.o. (70) 4 -15 Base 55 5 \oplus ¢ ᡛ⊨⊨⊏∗ ψ 70±0.3 (0.8) 116 (100) 132 87 <u>2.4±0.3</u> ф \$ ŧ 15 19.2 ►0.8±0 (14) 74 Moving Coil (162) $^{\circ}2 \times N2 \times 10$ dia. Gap (Refer to the side cross-sectional view for the depth.) Includes a 0.2-mm-thick magnet cover. $2 \times N1 \times M6 \times 8$ Side-to-Side Cross Section . ¢ (2.4±0.3) 34.5 12 54 $2\times N1\times M6\times 16$ 20 (54) L2 L3 (13) Unit: mm 11

◆ Magnetic Ways with Bases: SGLTM-35□□□AY

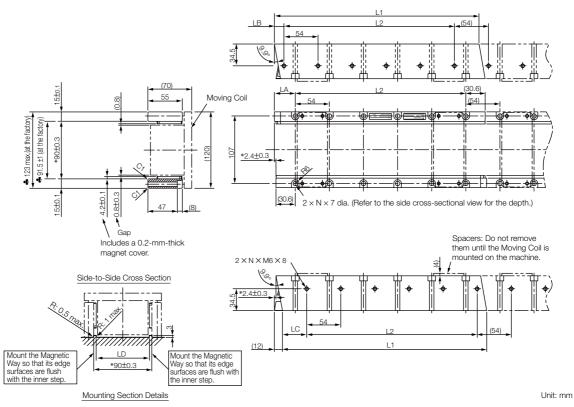

Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
35324AY	324 -0.1	270	310	162	162	6	2	6.4
35540AY	540 -0.1	486	526	378	189	10	3	11
35756AY	756 -0.1	702	742	594	198	14	4	15

5.3.3 SGLTW-35DDDDHD: High-efficiency Models

5.3.3 SGLTW-35000H0: High-efficiency Models

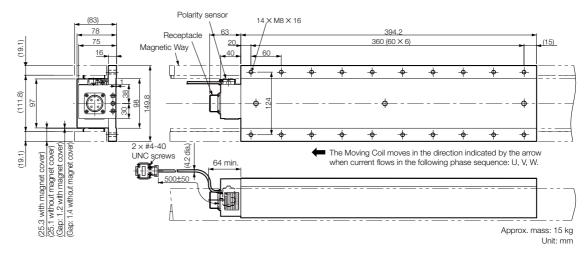
♦ SGLTW-35□□□□H□: High-efficiency Models


SGLIW-					[kg]
35A170Hロ	170	144 (48 × 3)	(16)	8	4.7
35A320Hロ	315	288 (48 × 6)	(17)	14	8.8

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-35A□□□H□ and -50A□□□H□ Moving Coils on page 5-24

5.3.3 SGLTW-35DDDDHD: High-efficiency Models

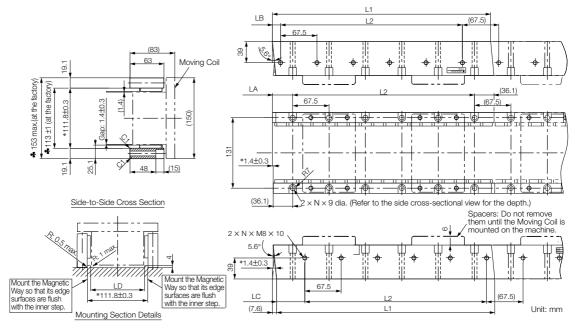


- Note: 1.Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.
 - 2. More than one Magnetic Way can be connected.
 - 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
 - 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
35324H □	324 -0.1	270 (54 × 5)	33 .0.2	15 .0.2	39 .0.2	82 +0.6	6	4.8
35540H □	540 -0.1	486 (54 × 9)	33 .0.2	15 .0.2	39 .0.2	82 +0.6	10	8
35756H□	756 -0.1	702 (54 × 13)	33 .0.2	15 .0.2	39 .0.2	82 +0.6	14	11

5.3.4 SGLTW-40: Standard Models

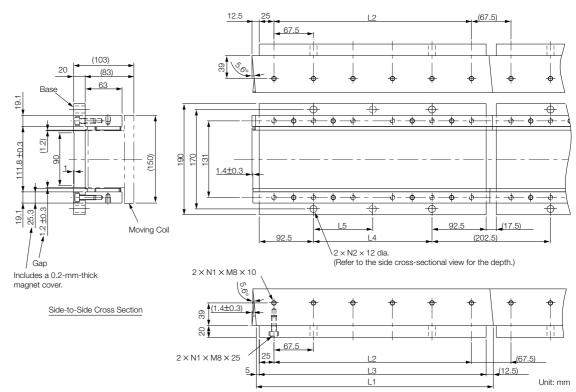
◆ Moving Coils: SGLTW-40A400B□



Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLTW-40A400B□ Moving Coils on page 5-23

5.3.4 SGLTW-40: Standard Models


◆ Magnetic Ways: SGLTM-40□□□A□

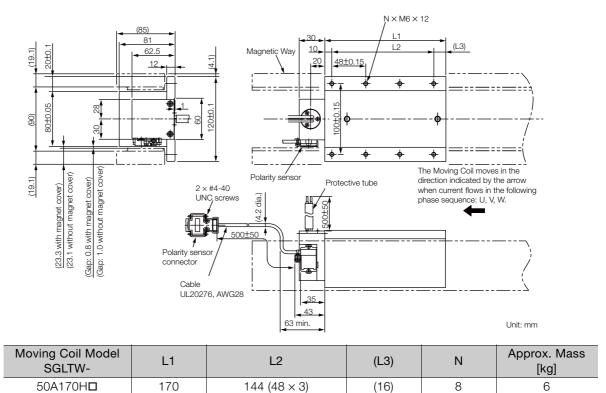
- Note: 1.Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.
 - 2. More than one Magnetic Way can be connected.
 - 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
 - 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	N	Approx. Mass [kg]
40405AD	405 -0.1	337.5 (67.5 × 5)	37.5 0.2	15 .0.2	52.5 0 -0.2	100 +0.6	6	9
40675A	675 -0.1	607.5 (67.5 × 9)	37.5 .0.2	15 .0.2	52.5 0 -0.2	100 +0.6	10	15
40945AD	945 -0.1	877.5 (67.5 × 13)	37.5 .0.2	15 .0.2	52.5 -0.2	100 +0.6	14	21

5.3.4 SGLTW-40: Standard Models

◆ Magnetic Ways with Bases: SGLTM-40□□□AY

Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.


Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
40405AY	405 -0.1	337.5	387.5	202.5	202.5	6	2	13
40675AY	675 -0.1	607.5	657.5	472.5	236.25	10	3	21
40945AY	945 -0.1	877.5	927.5	742.5	247.5	14	4	30

5.3.5 SGLTW-50: High-efficiency Models

50A320Hロ

5.3.5 SGLTW-50: High-efficiency Models

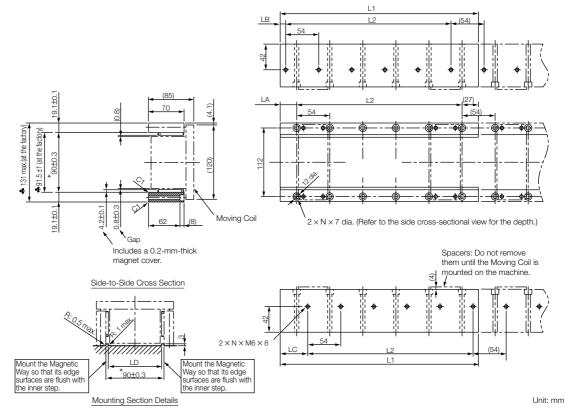
◆ Moving Coils: SGLTW-50A□□□H□

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

(17)

14

11


288 (48 × 6)

G SGLTW-35A□□□H□ and -50A□□□H□ Moving Coils on page 5-24

315

5.3.5 SGLTW-50: High-efficiency Models

♦ Magnetic Ways: SGLTM-50□□□H□

Note: 1.Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
50324H□	324 -0.1	270 (54 × 5)	27 .0.2	9 _0.2	45 .0.2	82 +0.6	6	8
50540Hロ	540 -0.1	486 (54 × 9)	27 .0.2	9 .0.2	45 .0.2	82 +0.6	10	13
50756HD	756 -0.1	702 (54 × 13)	27 _{-0.2}	9 .0.2	45 .0.2	82 +0.6	14	18

5.3.6 Connector Specifications

5.3.6 Connector Specifications

◆ SGLTW-20A□□□A□ and -35A□□□A□ Moving Coils

Servomotor Connector

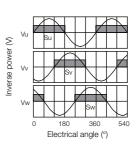
Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Black
4	Ground	Green

_

Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal	
1	+5 V (DC)	6		
2	Phase U	7	Not used	
3	Phase V	8		
4	Phase W	9		
5	0 V	-	-	

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

5.3.6 Connector Specifications

◆ SGLTW-40A400B□ Moving Coils

Servomotor Connector

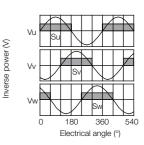
ьο 0 c 0 0

Receptacle: MS3102A-22-22P From DDK Ltd.

Mating Connector Right-angle plug: MS3108B22-22S Straight plug: MS3106B22-22S Cable clamp: MS3057-12A

Pin	Signal
А	Phase U
В	Phase V
С	Phase W
D	Ground

Polarity Sensor Connector ____6 Pin connector: 17

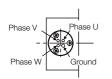

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal	
1	+5 V (power supply)	6		
2	Phase U	7	Not used	
3	Phase V	8		
4	Phase W	9		
5	0 V (power supply)	-	-	

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.


5

5.3.6 Connector Specifications

◆ SGLTW-35A□□□H□ and -50A□□□H□ Moving Coils

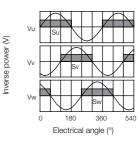
Moving Coil Lead

Secure the lead from the Moving Coil of the Linear Servomotor so that it moves together with the Moving Coil.

Туре	Color	Symbol	Wire Diameter
Phase U	Red	U	
Phase V	White	V	2 mm ²
Phase W	Black	W	2 mm-
Ground	Green	-	

(Viewed from the top surface of the Moving Coil.)

• Polarity Sensor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal	
1	+5 V (DC)	6		
2	Phase U	7	Not used	
3	Phase V	8	Not used	
4	Phase W	9		
5	5 0 V		_	

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

Specifications, Ratings, and External Dimensions of SGLC Servomotors

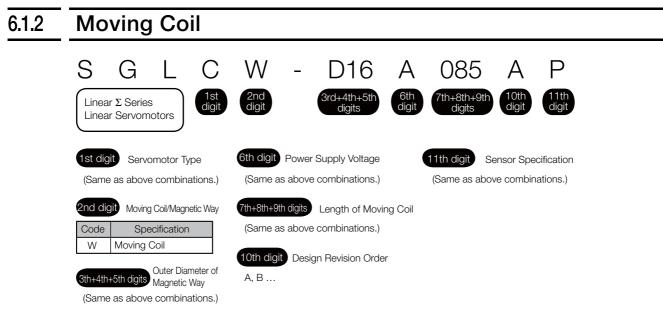
6

This chapter describes how to interpret the model numbers of SGLC Servomotors and gives their specifications, ratings, and external dimensions.

6.1	Mode	el Designations6-2
	6.1.1 6.1.2 6.1.3 6.1.4	Combination of Moving Coil and Magnetic Way. 6-2Moving Coil
6.2	Ratin	gs and Specifications
	6.2.1 6.2.2 6.2.3 6.2.4	Specifications6-6Ratings6-7Force-Motor Speed Characteristics6-8Servomotor Overload Protection Characteristics6-9
6.3	Exter	nal Dimensions6-10
	6.3.1 6.3.2 6.3.3 6.3.4 6.3.5	SGLC-D16 6-10 SGLC-D20 6-12 SGLC-D25 6-14 SGLC-D32 6-16 Connector Specifications 6-18

6.1.1 Combination of Moving Coil and Magnetic Way

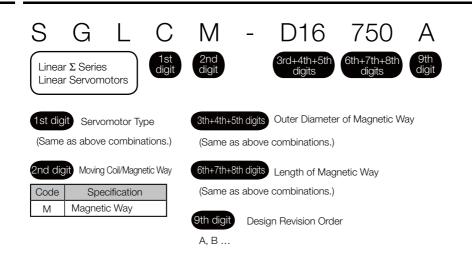
6.1	Model Desig	gna	tion	S					
6.1.1	Combination of	of M	oving	g Coil	an	d N	lagne	tic Way	
	SGLC	_	D16	A	08	5	AP	- 750	А
	Linear Σ Series Linear Servomotors		2nd+3rd+4t digits	th 5th digit	oth+7th digit	+8th s	9th digit digit	11th+12th+13 digits Note: This code contains four of if the length of the Magn Way is 1,000 or longer.	digit
	1st digit Servomotor Type	6th+7th		Length of Moving Coil*	1	11th+	12th+13th dig	its Length of Ma	gnetic Way*1
	Code Specification	Code	Specification	Outer Diameter		Code	Specification	Special O	rders*2
	C Cylinder model		-	of Magnetic Wa	/	300	300 mm	240 mm to 420 mm (ir	n 30-mm increments)
		085	85 mm	D16		350	350 mm	280 mm to 490 mm (ir	n 35-mm increments)
	2nd+3rd+4th digits	100	100 mm	D20		450	450 mm	360 mm to 630 mm (ir	n 45-mm increments)
	Outer Diameter of Magnetic Way*1	115	115 mm	D16		510	510 mm	480 mm to 750 mm (ir	n 30-mm increments)
	<u> </u>	125	125 mm	D25		590	590 mm	555 mm to 870 mm (ir	n 35-mm increments)
	Code Specification	135	135 mm	D20		600	600 mm	480 mm to 840 mm (ir	n 60-mm increments)
	D16 16 mm	145	145 mm	D16				For Magnetic Way wit	h outer diameter of
	D20 20 mm	165	165 mm	D32				480 mm to 750 mm (ir	n 30-mm increments)
	D25 25 mm	170	170 mm	D20, D25		750	750 mm	For Magnetic Way wit	h outer diameter of
	D32 32 mm	215	215 mm	D25				25 mm: 705 mm to 1,110 mm (in 45 mm incromonto)
		225	225 mm	D32		870	870 mm	555 mm to 870 mm (ir	<u></u>
	5th digit Power Supply Voltage	285	285 mm	D32		1020	1020 mm	960 mm to 1,500 mm (· · · · ·
	Code Specification		Destau	De delas Or		1110	1110 mm	705 mm to 1,110 mm (· · · · · · · · · · · · · · · · · · ·
	A 200 VAC	9th dig	••••••••••••••••••••••••••••••••••••••	Revision Ore	aer	1500	1500 mm	960 mm to 1,500 mm (· · · · · · · · · · · · · · · · · · ·
	<u> </u>	A, B				1000			
		10th d Code	igit Senso Specific With polar		n	14th d A, B		Revision Order of Ma	gnetic Way


*1. There are restrictions in the allowable combinations. Refer to the following section for details.

5.1.4 List of Models on page 6-4

*2. Contact your Yaskawa representative when you make an order.

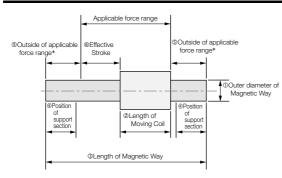
- Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.
 - 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.


6.1.2 Moving Coil

Note: 1.Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.

2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

6.1.3 Magnetic Way



- Note: 1.Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.
 - 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

6

6.1.4 List of Models

6.1.4 List of Models

	0	2	3	4	\$	6
Model SGLC-	Outer diame- ter of Mag- netic Way [mm]	Length of Moving Coil [mm]	Length of Magnetic Way [mm]	Magnetic Support Sec-		Effective Stroke [mm]
D16A085AP-300A			300	30	37.5	140
D16A085AP-510A	16	85	510	45	52.5	320
D16A085AP-750A			750	45	52.5	560
D16A115AP-300A			300	30	37.5	110
D16A115AP-510A	16	115	510	45	52.5	290
D16A115AP-750A			750	45	52.5	530
D16A145AP-300A			300	30	37.5	80
D16A145AP-510A	16	145	510	45	52.5	260
D16A145AP-750A			750	45	52.5	500
D20A100AP-350A			350	35	45	160
D20A100AP-590A	20	100	590	50	60	370
D20A100AP-870A	-		870	50	60	650
D20A135AP-350A			350	35	45	125
D20A135AP-590A	20	135	590	50	60	335
D20A135AP-870A			870	50	60	615
D20A170AP-350A	20	170	350	35	45	90
D20A170AP-590A			590	50	60	300
D20A170AP-870A			870	50	60	580
D25A125AP-450A			450	45	57.5	210
D25A125AP-750A	25	125	750	60	72.5	480
D25A125AP-1110A			1110	60	72.5	840
D25A170AP-450A			450	45	57.5	165
D25A170AP-750A	25	170	750	60	72.5	435
D25A170AP-1110A	-		1110	60	72.5	795
D25A215AP-450A			450	45	57.5	120
D25A215AP-750A	25	215	750	60	72.5	390
D25A215AP-1110A	-		1110	60	72.5	750
D32A165AP-600A			600	60	75	285
D32A165AP-1020A	32	165	1020	90	105	645
D32A165AP-1500A	1		1500	90	105	1125
D32A225AP-600A			600	60	75	225
D32A225AP-1020A	32	225	1020	90	105	585
D32A225AP-1500A	1		1500	90	105	1065
D32A285AP-600A			600	60	75	165
D32A285AP-1020A	32	285	1020	90	105	525
D32A285AP-1500A			1500	90	105	1005

6-4

6.1.4 List of Models

* The characteristics given in 6.2.3 Force-Motor Speed Characteristics on page 6-8 will not be met when the Moving Coil is outside of applicable force range. 6.2.1 Specifications

6.2 Ratings and Specifications

6.2.1 Specifications

Linear Servomotor Model SGLC-			D16A			D20A			D25A			D32A	
		085A	115A	145A	100A	135A	170A	125A	170A	215A	165A	225A	285A
Time Rating			Continuous										
Thermal	Thermal Class		В										
Insulation	Insulation Resistance		500 VDC, 10 MΩ min.										
Withstand Voltage		1,500 VAC for 1 minute											
Excitation		Permanent magnet											
Cooling I	Cooling Method		Self-cooled										
Protectiv	Protective Structure		IP00										
	Surround- ing Air Tempera- ture		0°C to 40°C (with no freezing)										
Envi- ron- mental Condi- tions	Surround- ing Air Humidity		20% to 80% relative humidity (with no condensation)										
	Installation Site	 Must Must Must 	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 										
Shock Resis-	Impact Accelera- tion Rate	98 m/s ²											
tance	Number of Impacts	2 times											
Vibra- tion Resis- tance	Vibration Accelera- tion Rate	Moving Coil: 24.5 m/s ² (the vibration resistance in three directions, vertical, side- side, and front-to-back) Magnetic Way: 24.5 m/s ² (the vibration resistance in the direction of the shaft) 4.9 m/s ² (the vertical and horizontal vibration resistance)							-to-				
Combined Magnetic Way, SGLCM-		D							D25000A D32000A				A
Combined Serial Converter Unit, JZDP-		354	373	356	357	358	359	360	374	362	363	364	365
Appli- cable SER-	SGD7S-	R70A	R70A	R90A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	2R8A	5R5A	5R5A
SER- VOPAC Ks	SGD7W-	1R6A	1R6A	1R6A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	2R8A	5R5A	5R5A

6.2.2 Ratings

6.2.2 Ratings

Linear Servomotor Model SGLC-		D16A			D20A			D25A			D32A		
		085A	115A	145A	100A	135A	170A	125A	170A	215A	165A	225A	285A
Rated Motor Speed (Reference Speed during Speed Control) ^{*1}	m/s	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Maximum Speed ^{*1, *3}	m/s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Rated Force ^{*1, *2}	N	17	25	34	30	45	60	70	105	140	90	135	180
Maximum Force ^{*1}	N	60	90	120	150	225	300	280	420	560	420	630	840
Rated Current ^{*1}	Arms	0.59	0.53	0.66	0.98	0.98	1.2	1.4	1.8	3.5	1.6	2.8	2.8
Maximum Current ^{*1}	Arms	2.1	2.1	2.5	4.9	4.9	6.0	5.7	7.0	13.0	7.3	13.0	13.0
Moving Coil Mass	kg	0.30	0.40	0.50	0.60	0.80	1.0	1.0	1.4	1.8	1.8	2.5	3.2
Force Constant	N/ Arms	31.2	46.8	51.3	33.0	49.5	54.3	53.1	64.8	43.2	61.8	52.2	69.6
BEMF Constant	Vrms/ (m/s)/ phase	10.4	15.6	17.1	11.0	16.5	18.1	17.7	21.6	14.4	20.6	17.4	23.2
Motor Constant	N/√W	4.78	5.85	6.67	7.47	9.18	10.4	10.0	12.4	15.4	16.2	20.0	23.0
Electrical Time Constant	ms	0.18	0.18	0.17	0.38	0.32	0.41	0.18	0.59	0.65	0.98	1.0	1.1
Mechanical Time Constant	ms	13	12	11	11	9.5	9.2	10	9.1	7.6	6.9	6.3	6.0
Thermal Resistance (with Heat Sink)	K/W	3.35	2.90	1.64	1.66	1.45	1.29	1.00	0.68	0.61	0.77	0.53	0.49
Thermal Resistance (without Heat Sink)	K/W	6.79	5.24	4.26	4.35	3.38	2.76	2.99	2.29	1.81	1.87	1.43	1.16
Magnetic Attraction ^{*4}	Ν	0	0	0	0	0	0	0	0	0	0	0	0

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

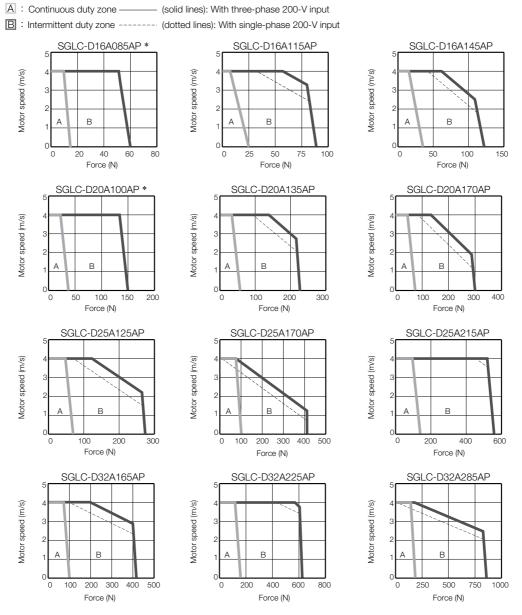
*2. The rated forces are the continuous allowable force values at 40°C with an aluminum heat sink of the dimensions given below.

Heat Sink Dimensions

+ 100 mm \times 200 mm \times 12 mm: SGLC-D16A085A and -D16A115A

+ 200 mm \times 300 mm \times 12 mm: SGLC-D16A145A, -D20A100A, -D20A135A, and -D20A170A

+ 300 mm \times 400 mm \times 12 mm: SGLC-D25A125A and -D32A165A


+ 400 mm \times 500 mm \times 12 mm: SGLC-D25A170A, -D25A215A, -D32A225A, and -D32A285A

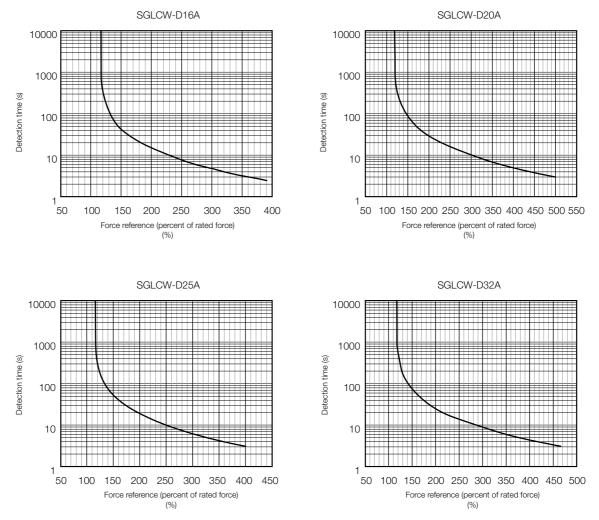
*3. For speed control operation with an analog voltage reference, set 1.5 m/s as the rated motor speed.

*4. This is the theoretical magnetic attraction between the Moving Coil and Magnetic Way. The unbalanced magnetic gap after installation causes a magnetic attraction. 6

6.2.3 Force-Motor Speed Characteristics

6.2.3 Force-Motor Speed Characteristics

* The characteristics are the same for three-phase 200 V and single-phase 200 V.


Note: 1.These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

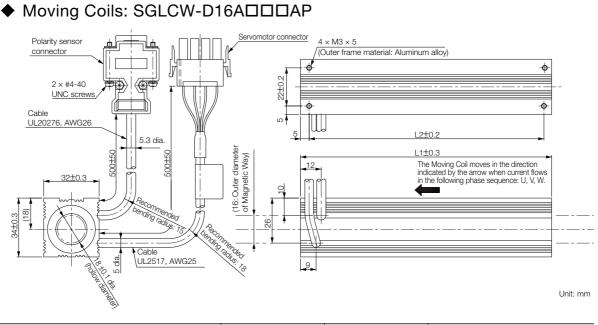
- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

6.2.4 Servomotor Overload Protection Characteristics

6.2.4 Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor ambient temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.


Use the Servomotor so that the effective force remains within the continuous duty zone given in 6.2.3 Force-Motor Speed Characteristics on page 6-8.

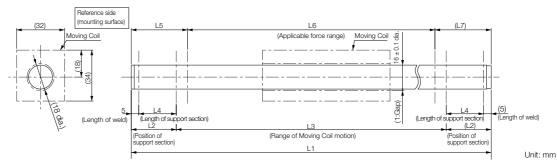
6

6.3.1 SGLC-D16

6.3 External Dimensions

6.3.1 SGLC-D16

Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D16A085AP	85	75	0.3
D16A115AP	115	105	0.4
D16A145AP	145	135	0.5

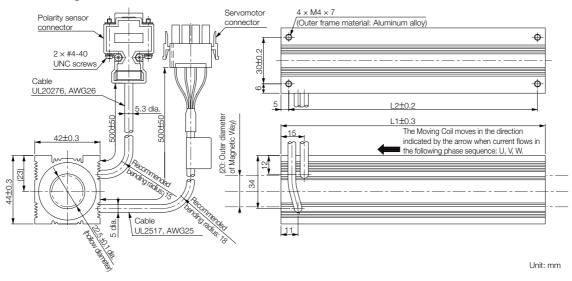

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLC-D16 and -D20 Moving Coils on page 6-18

6.3.1 SGLC-D16

◆ Magnetic Ways: SGLCM-D16□□□A

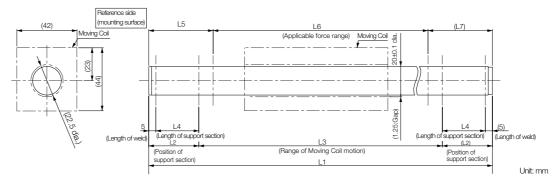

Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D16240A	240 ± 1.6	30	180	25	37.5 ± 0.3	165 ± 1.2	37.5	0.38
D16270A	270 ± 1.6	30	210	25	37.5 ± 0.3	195 ± 1.2	37.5	0.43
D16300A	300 ± 1.6	30	240	25	37.5 ± 0.3	225 ± 1.2	37.5	0.48
D16330A	330 ± 1.6	30	270	25	37.5 ± 0.3	255 ± 1.2	37.5	0.53
D16360A	360 ± 1.6	30	300	25	37.5 ± 0.3	285 ± 1.2	37.5	0.58
D16390A	390 ± 1.6	30	330	25	37.5 ± 0.3	315 ± 1.2	37.5	0.63
D16420A	420 ± 1.6	30	360	25	37.5 ± 0.3	345 ± 1.2	37.5	0.68
D16480A	480 ± 2.5	45	390	40	52.5 ± 0.3	375 ± 2.1	52.5	0.75
D16510A	510 ± 2.5	45	420	40	52.5 ± 0.3	405 ± 2.1	52.5	0.80
D16540A	540 ± 2.5	45	450	40	52.5 ± 0.3	435 ± 2.1	52.5	0.85
D16570A	570 ± 2.5	45	480	40	52.5 ± 0.3	465 ± 2.1	52.5	0.90
D16600A	600 ± 2.5	45	510	40	52.5 ± 0.3	495 ± 2.1	52.5	0.95
D16630A	630 ± 2.5	45	540	40	52.5 ± 0.3	525 ± 2.1	52.5	1.00
D16660A	660 ± 2.5	45	570	40	52.5 ± 0.3	555 ± 2.1	52.5	1.05
D16690A	690 ± 2.5	45	600	40	52.5 ± 0.3	585 ± 2.1	52.5	1.10
D16720A	720 ± 2.5	45	630	40	52.5 ± 0.3	615 ± 2.1	52.5	1.15
D16750A	750 ± 3.0	45	660	40	52.5 ± 0.3	645 ± 2.5	52.5	1.20

6.3.2 SGLC-D20

6.3.2 SGLC-D20

◆ Moving Coils: SGLCW-D20A□□□AP

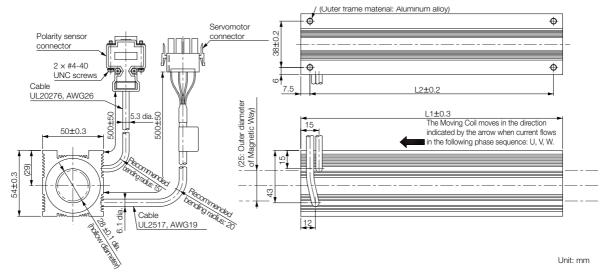

Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D20A100AP	100	90	0.6
D20A135AP	135	125	0.8
D20A170AP	170	160	1.0

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

6.3.2 SGLC-D20

◆ Magnetic Ways: SGLCM-D20□□□A


Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

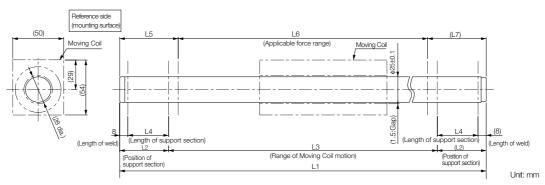
Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D20280A	280 ± 1.6	35	210	30	45 ± 0.3	190 ± 1.2	45	0.68
D20315A	315 ± 1.6	35	245	30	45 ± 0.3	225 ± 1.2	45	0.77
D20350A	350 ± 1.6	35	280	30	45 ± 0.3	260 ± 1.2	45	0.86
D20385A	385 ± 1.6	35	315	30	45 ± 0.3	295 ± 1.2	45	0.95
D20420A	420 ± 1.6	35	350	30	45 ± 0.3	330 ± 1.2	45	1.00
D20455A	455 ± 1.6	35	385	30	45 ± 0.3	365 ± 1.2	45	1.10
D20490A	490 ± 1.6	35	420	30	45 ± 0.3	400 ± 1.2	45	1.20
D20555A	555 ± 2.5	50	455	45	60 ± 0.3	435 ± 2.1	60	1.35
D20590A	590 ± 2.5	50	490	45	60 ± 0.3	470 ± 2.1	60	1.45
D20625A	625 ± 2.5	50	525	45	60 ± 0.3	505 ± 2.1	60	1.55
D20660A	660 ± 2.5	50	560	45	60 ± 0.3	540 ± 2.1	60	1.60
D20695A	695 ± 2.5	50	595	45	60 ± 0.3	575 ± 2.1	60	1.70
D20730A	730 ± 2.5	50	630	45	60 ± 0.3	610 ± 2.1	60	1.80
D20765A	765 ± 2.5	50	665	45	60 ± 0.3	645 ± 2.1	60	1.90
D20800A	800 ± 2.5	50	700	45	60 ± 0.3	680 ± 2.1	60	2.00
D20835A	835 ± 2.5	50	735	45	60 ± 0.3	715 ± 2.1	60	2.10
D20870A	870 ± 3.0	50	770	45	60 ± 0.3	750 ± 2.5	60	2.20

6.3.3 SGLC-D25

6.3.3 SGLC-D25

◆ Moving Coils: SGLCW-D25A□□□AP

Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D25A125AP	125	110	1.0
D25A170AP	170	153	1.4
D25A215AP	215	200	1.8

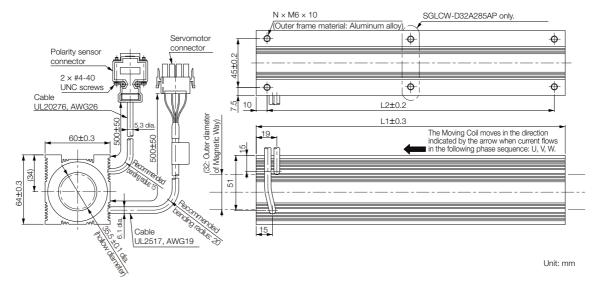

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ◆ SGLC-D25 and -D32 Moving Coils on page 6-19

6.3.3 SGLC-D25

◆ Magnetic Ways: SGLCM-D25□□□A


Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

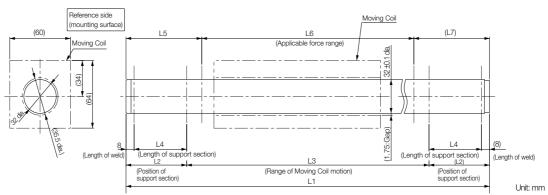
Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D25360A	360 ± 1.6	45	270	37	57.5 ± 0.3	245 ± 1.2	57.5	1.50
D25405A	405 ± 1.6	45	315	37	57.5 ± 0.3	290 ± 1.2	57.5	1.65
D25450A	450 ± 1.6	45	360	37	57.5 ± 0.3	335 ± 1.2	57.5	1.80
D25495A	495 ± 1.6	45	405	37	57.5 ± 0.3	380 ± 1.2	57.5	1.95
D25540A	540 ± 1.6	45	450	37	57.5 ± 0.3	425 ± 1.2	57.5	2.10
D25585A	585 ± 1.6	45	495	37	57.5 ± 0.3	470 ± 1.2	57.5	2.25
D25630A	630 ± 1.6	45	540	37	57.5 ± 0.3	515 ± 1.2	57.5	2.40
D25705A	705 ± 2.5	60	585	52	72.5 ± 0.3	560 ± 2.1	72.5	2.85
D25750A	750 ± 2.5	60	630	52	72.5 ± 0.3	605 ± 2.1	72.5	3.00
D25795A	795 ± 2.5	60	675	52	72.5 ± 0.3	650 ± 2.1	72.5	3.15
D25840A	840 ± 2.5	60	720	52	72.5 ± 0.3	695 ± 2.1	72.5	3.30
D25885A	885 ± 2.5	60	765	52	72.5 ± 0.3	740 ± 2.1	72.5	3.45
D25930A	930 ± 2.5	60	810	52	72.5 ± 0.3	785 ± 2.1	72.5	3.60
D25975A	975 ± 2.5	60	855	52	72.5 ± 0.3	830 ± 2.1	72.5	3.75
D251020A	1020 ± 2.5	60	900	52	72.5 ± 0.3	875 ± 2.1	72.5	3.90
D251065A	1065 ± 2.5	60	945	52	72.5 ± 0.3	920 ± 2.1	72.5	4.05
D251110A	1110 ± 3.0	60	990	52	72.5 ± 0.3	965 ± 2.5	72.5	4.20

6.3.4 SGLC-D32

6.3.4 SGLC-D32

◆ Moving Coils: SGLCW-D32A□□□AP

Moving Coil Model SGLCW-	L1	L2	N	Approx. Mass [*] [kg]
D32A165AP	165	145	4	1.8
D32A225AP	225	205	4	2.5
D32A285AP	285	265	6	3.2


* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connection specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLC-D25 and -D32 Moving Coils on page 6-19

6.3.4 SGLC-D32

◆ Magnetic Ways: SGLCM-D32□□□A

Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D32480A	480 ± 1.6	60	360	52	75 ± 0.3	330 ± 1.2	75	3.0
D32540A	540 ± 1.6	60	420	52	75 ± 0.3	390 ± 1.2	75	3.4
D32600A	600 ± 1.6	60	480	52	75 ± 0.3	450 ± 1.2	75	3.8
D32660A	660 ± 1.6	60	540	52	75 ± 0.3	510 ± 1.2	75	4.2
D32720A	720 ± 1.6	60	600	52	75 ± 0.3	570 ± 1.2	75	4.6
D32780A	780 ± 1.6	60	660	52	75 ± 0.3	630 ± 1.2	75	5.0
D32840A	840 ± 1.6	60	720	52	75 ± 0.3	690 ± 1.2	75	5.4
D32960A	960 ± 2.5	90	780	82	105 ± 0.3	750 ± 2.1	105	5.9
D321020A	1020 ± 2.5	90	840	82	105 ± 0.3	810 ± 2.1	105	6.3
D321080A	1080 ± 2.5	90	900	82	105 ± 0.3	870 ± 2.1	105	6.7
D321140A	1140 ± 2.5	90	960	82	105 ± 0.3	930 ± 2.1	105	7.1
D321200A	1200 ± 2.5	90	1020	82	105 ± 0.3	990 ± 2.1	105	7.5
D321260A	1260 ± 2.5	90	1080	82	105 ± 0.3	1050 ± 2.1	105	7.9
D321320A	1320 ± 2.5	90	1140	82	105 ± 0.3	1110 ± 2.1	105	8.3
D321380A	1380 ± 2.5	90	1200	82	105 ± 0.3	1170 ± 2.1	105	8.7
D321440A	1440 ± 2.5	90	1260	82	105 ± 0.3	1230 ± 2.1	105	9.1
D321500A	1500 ± 3.0	90	1320	82	105 ± 0.3	1290 ± 2.5	105	9.5

6.3.5 Connector Specifications

6.3.5 Connector Specifications

SGLC-D16 and -D20 Moving Coils

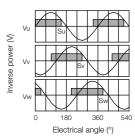
Servomotor Connector

Plug: 350779-1 Pins: 350561-3 or 350690-3 (No.1 to 3) 770210-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

Servomotor Connector


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Pin	Signal	
1	+5 V (power supply)	6	Not	
2	Phase U	nase U 7		
3	Phase V	8		
4	Phase W	9		
5	0 V (power supply)	-	_	

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

6.3.5 Connector Specifications

SGLC-D25 and -D32 Moving Coils

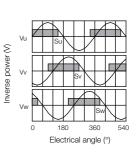
Servomotor Connector

Plug: 350779-1 Pins: 350561-3 or 350690-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) From Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

• Polarity Sensor Connector

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.


Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Pin	Signal	Wire Color
1	Phase U	Red
2	Phase V	White
3	Phase W	Blue
4	FG	Green

Pin	Signal	Pin	Signal
1	+5 V (power supply)	6	Not
2	Phase U	7	used
3	Phase V	8	
4	Phase W	9	
5	0 V (power supply)	-	-

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

Equipment Design Precautions

This chapter provides precautions for equipment design.

7.1	Influe	nce of Magnetic Attraction7-2
	7.1.1 7.1.2 7.1.3	SGLF Servomotors7-2SGLT Servomotors7-3SGLC Servomotors7-4
7.2	Influe	nce of Magnetic Way Leakage Flux7-5
	7.2.1 7.2.2 7.2.3 7.2.4	SGLG Servomotors7-5SGLF Servomotors7-5SGLT Servomotors7-6SGLC Servomotors7-6
7.3	Speci	al Precautions for SGLT Servomotors7-7
7.4	Speci	al Precautions for SGLC Servomotors7-8
7.5	Specific	cations When Connecting More Than One Moving Coil 7-9
	7.5.1 7.5.2	Mounting Position Precautions 7-9 Connection Procedure 7-10

7.1.1 SGLF Servomotors

7.1 Influence of Magnetic Attraction

7.1.1 SGLF Servomotors

The Moving Coil and Magnetic Way face each other, so magnetic attraction will occur. Consider the following magnetic attractions when you design the equipment.

Gap,

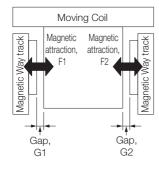
Moving	Coil Model	Gap, G ^{*1} (mm)	Magnetic Attrac- tion, F ^{*2} (N)		
	20A090		410	-	
	20A120		600	-	
	35A120		1100	-	
SGLFW-	35A230	0.7	2100	-	
SGLFW-	50A200	$(0.5)^{*3}$	2100	-	
	50A380		4100	-	
	1ZA200		4200	-	Magnetic
	1ZA380		6520	-	attraction,
	30A070		240	-	F
	30A120		750	-	
	30A230		1490		I
	45A200		2390	-	
SGLFW2-	45A380	0.5	4770	-	
SGLFW2-	90A200	0.5	4770	-	
	90A380		9550	-	
	90A560		14300	-	
	1DA380		14300	-	
	1DA560		21500	-	

*1. Gap values are given for the design value minus 0.3 mm.

 $\ast 2.$ The maximum force is given for the magnetic attraction.

*3. Dimensions in parentheses are for when the magnet cover is attached.

7.1.2 SGLT Servomotors


The Magnetic Way tracks are located on both sides of the Moving Coil. If the gaps on both sides of the Moving Coil are the same, the magnetic attraction is canceled. However, it is difficult to obtain the same gaps due to Servomotor precision, the precision of the user's equipment, error when assembling the Servomotor, and other factors. Consider the following magnetic attractions when you design the equipment.

Moving Coil Model SGLTW-	Magnetic Gap, G1 ^{*1} (mm)	Magnetic Gap, G2 ^{*1} (mm)	Magnetic Attraction, F1 ^{*2} (N)	Magnetic Attraction, F2 ^{*2} (N)	Difference in Magnetic Attraction, ΔF (N)
20A170	1.3	0.7	760	1030	270
20A320	$(1.1)^{*3}$	(0.5)*3	1510	2040	530
20A460	(1.1)	(0.0)	2260	3050	790
35A170	1.3	0.7	1330	1800	470
35A320	$(1.1)^{*3}$	$(0.5)^{*3}$	2650	3570	920
35A460	(1.1)		4000	5400	1400
40A400	1.7 (1.5) ^{*3}	1.1 (0.9) ^{*3}	4700	5900	1200
50A170	1.3	0.7	1900	2600	700
50A320	$(1.1)^{*3}$	(0.5)*3	3750	5100	1350

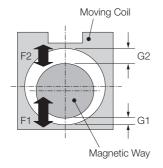
*1. Gap values are given for the design value plus 0.3 mm on one side and minus 0.3 mm on the other side.

*2. The maximum force is given for the magnetic attraction.

*3. Dimensions in parentheses are for when the magnet cover is attached.

7.1.3 SGLC Servomotors

7.1.3 SGLC Servomotors


A steel yoke is embedded in the Moving Coil to generate force, so magnetic attraction occurs between the Moving Coil and Magnetic Way. If the gaps between the Moving Coil and Magnetic Way are the same, the magnetic attraction is canceled. However, it is difficult to obtain the same gaps due to Servomotor precision, deflection in the Magnetic Way, the precision of the user's equipment, error when assembling the Servomotor, and other factors. Consider the following magnetic attractions when you design the equipment.

Moving Coil Model SGLCW-	Gap Design Value (mm)	Gap, G1 ^{*1} (mm)	Gap, G2 ^{*1} (mm)	Difference in Magnetic Attraction, F1-F2 ^{*2} (N)
D16A085				20
D16A115	1.0	0.3	1.7	30
D16A145				40
D20A100				25
D20A135	1.25	0.4	2.1	38
D20A170				50
D25A125				50
D25A170	1.5	0.5	2.5	75
D25A215				100
D32A165				80
D32A225	1.75	0.5	3.0	120
D32A285				160

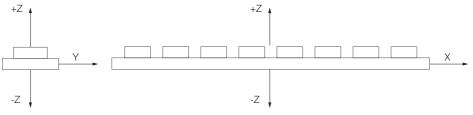
*1. Gap values are given for an approximately 70% shift in the design value.

 $\ast 2.$ The maximum force is given for the magnetic attraction.

Note: Contact your Yaskawa representative for conditions other than those given above.

The example in the above figure shows a vertical shift in the Magnetic Way. Magnetic attraction can work in any direction due to assembly error.

7.2 Influence of Magnetic Way Leakage Flux


The Magnetic Way has leakage flux. Particularly in locations where the leakage flux is 10 gauss or higher, the influence of the leakage flux will be strongly felt. Consider this in the equipment design. The following tables give the locations where the leakage flux will be 10 gauss for each Servomotor model.

7.2.1 SGLG Servomotors

Magnetic Way	Location of 10-Gauss Leakage Flux				
Model SGLGM-	X (mm)	+Y (mm)	-Y (mm)	Z (mm)	
30	25	25	5	35	
40000C0	30	30	5	40	
40000C0-M	50	50	5	60	
60000C0	45	40	5	55	
60000C0-M	65	60	5	75	
90	100	85	5	115	
-Y		Z 🛔		×	

7.2.2 SGLF Servomotors

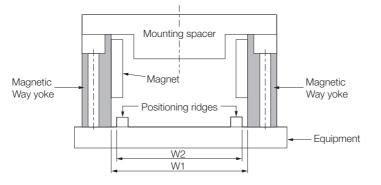
Magnetic Way	Location of 10-Gauss Leakage Flux					
Model	X (mm)	Y (mm)	+Z (mm)	-Z (mm)		
SGLFM-20	60	35	65	5		
SGLFM-35	70	45	85	5		
SGLFM-50	90	50	105	5		
SGLFM-1Z	120	60	135	5		
SGLFM2-30	60	30	70	5		
SGLFM2-45	90	50	105	5		
SGLFM2-90	120	60	135	5		
SGLFM2-1D	130	70	150	5		
+Z 🗼		+Z 🖡				

7.2.3 SGLT Servomotors

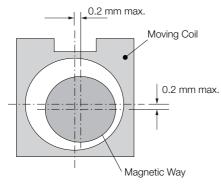
7.2.3 SGLT Servomotors

Magnetic Way	Locatio	Location of 10-Gauss Leakage Flux				
Model SGLTM-	X (mm)	Y (mm)	Z (mm)			
20	55	40	10			
35000A	60	40	10			
35000H	65	45	15			
40	80	60	15			
50	70	50	15			
80	90	60	20			
Z	Z					
	Y					

7.2.4 SGLC Servomotors

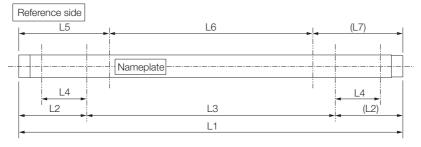

Magnetic Way	Location of 10-Gauss Leakage Flux			
Model SGLCM-	X (mm)	Y, Z (mm)		
D16	65	50		
D20	80	60		
D25	90	70		
D32	125	95		

7.3 Special Precautions for SGLT Servomotors


To mount the Magnetic Way, space is required between the Magnetic Way yoke and the positioning ridges on the equipment. Design the equipment with the following recommended values (W2) for the positioning ridges on the equipment.

Magnetic Way	Dimensions (mm)				
Model SGLTM-	W1 (Factory Distance between Magnetic Way Yokes)	W2 (Recommended Positioning Ridge Dimensions for Equipment)			
20 35□□□□	71.5 ± 1	70 ± 0.15			
40 80	113 ± 1	111.8 ± 0.15			
35□□□H 50	91.5 ± 1	90 ± 0.15			

7.4 Special Precautions for SGLC Servomotors


• Design the equipment so that the cross-sectional centers of the Magnetic Way and Moving Coil are offset by no more than 0.2 mm.

• Position the support section of the Magnetic Way as given in the following table.

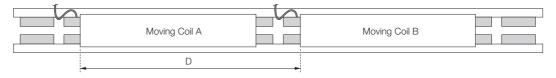
Magnetic Way Model SGLCM-	Total Length of Magnetic Way, L1 (mm)	Position of Support Section, L2 (mm)	Driving Range of Moving Coil, L3 (mm)	Length of Support Section, L4 (mm)	Range Out- side of Applicable Force Range*, L5 (mm)	Applica- ble Force Range, L6 (mm)	Range Outside of Applica- ble Force Range*, L7 (mm)
D16300	300 ± 1.6	30	240	25	37.5 ± 0.3	225 ± 1.2	37.5
D16510	510 ± 2.5	45	420	40	52.5 ± 0.3	405 ± 2.1	52.5
D16750	750 ± 3.0	45	660	40	52.5 ± 0.3	645 ± 2.5	52.5
D20350	350 ± 1.6	35	280	30	45 ± 0.3	260 ± 1.2	45
D20590	590 ± 2.5	50	490	45	60 ± 0.3	470 ± 2.1	60
D20870	870 ± 3.0	50	770	45	60 ± 0.3	750 ± 2.5	60
D25450	450 ± 1.6	45	360	37	57.5 ± 0.3	335 ± 1.2	57.5
D25750	750 ± 2.5	60	630	52	72.5 ± 0.3	605 ± 2.1	72.5
D251110	1110 ± 3.0	60	990	52	72.5 ± 0.3	965 ± 2.5	72.5
D32600	600 ± 1.6	60	480	52	75 ± 0.3	450 ± 1.2	75
D321020	1020 ± 2.5	90	840	82	105 ± 0.3	810 ± 2.1	105
D321500	1500 ± 3.0	90	1320	82	105 ± 0.3	1290 ± 2.5	105

* If any part of the Moving Coil is in this range, the specified characteristic may not be satisfied.

7.5.1 Mounting Position Precautions

7.5 Specifications When Connecting More Than One Moving Coil

With a Linear Servomotor, you can connect more than one Moving Coil (i.e., connect more than one Moving Coil in parallel and drive them with one SERVOPACK). Observe the following precautions when you connect more than one Moving Coil.



The specifications for the Main Circuit Cable and Serial Converter Unit are different from the standard specifications. Contact your Yaskawa representative for details.

7.5.1 Mounting Position Precautions

Series Arrangement

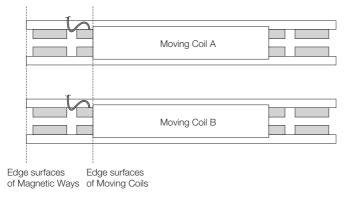
Position the Moving Coils as shown in the following figure so that the current phases of the Moving Coils are aligned.

			Maximum Force (N)		Applicable	
Moving Coil Model		One Moving Coil	Two Moving Coils	SERVOPACK Model ^{*1} SGD7S-	Dimension D (mm)	
		253C	440	880	5R5A	$315 + 45 \times n^{*2}$
	60A	2000	(720)	(1440)	(120A)	$315 + 45 \times n^{*2}$
SGLGW-	UUA	365C	660	1320	120A	450+ 45 × n ^{*2}
SGLGW-		3050	(1080)	(2160)	(180A)	$450 + 45 \times n^{*2}$
	90A	370C	2200	4400	330A	$420 + 84 \times n^{*2}$
	90A	535C	3000	6000	330A	588 + 84× n ^{*2}
SGLFW-	50A	380B	1200	2400	330A	$450 + 45 \times n^{*2}$
SGLFW-	1ZA	380B	2400	4800	470A	$450 + 45 \times n^{*2}$
	90A	380A	3360	6720	470A	$459 + 51 \times n^{*2}$
SGLFW2-	90A	560A	5040	10080	780A	663 + 51 × n ^{*2}
SGLFWZ-	1DA	380A	5040	10080	470A	459 + 51× n ^{*2}
	IDA	560A	7560	15120	780A	663 + 51 × n ^{*2}
10	40A	400B	2600	5200	330A	$405 + 45 \times n^{*2}$
SGLTW-	40A	600B	4000	8000	550A	$585 + 45 \times n^{*2}$
SGLIW-	90.4	400B	5000	10000	550A	$405 + 45 \times n^{*2}$
	80A 600B		7500	15000	780A	$585 + 45 \times n^{*2}$

*1. This is the model number of the applicable SERVOPACK when you connect two Moving Coils. You will need to obtain an estimate for the model numbers of applicable SERVOPACKs if you want to connect three or more Moving Coils. Contact your Yaskawa representative for details.

*2. n = Number of Moving Coils arranged in series

Note: 1. The entries in parentheses are the values and model numbers for combining High-Force Moving Coils.

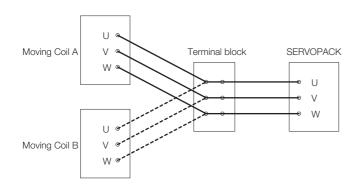

The dimensional tolerance for the separation between Moving Coils is ±0.3 mm.
 Consult your Yaskawa representative if you want to connect Linear Servementers that a

^{3.} Consult your Yaskawa representative if you want to connect Linear Servomotors that are not listed in the table.

7.5.2 Connection Procedure

Parallel Arrangement

Mount the Moving Coils and Magnetic Ways within a tolerance of ± 0.3 mm at the edge surfaces of the Moving Coils and Magnetic Ways so that the current phases of the Moving Coil are aligned.


7.5.2 Connection Procedure

9

Note

Burnout Protection Circuit

Connect two Moving Coils in parallel as shown in the following figure. If you turn ON the power supply with only one Moving Coil connected, an overcurrent will flow and the Moving Coil may burn out. Always check the connections before you turn ON the power supply. When you connect more than one Moving Coil, we recommend that you use a CT (current transformer) and install a burnout protection circuit. Contact your Yaskawa representative for details.

Servomotor Installation

This chapter describes the installation conditions, procedures, and precautions for Servomotors.

8.1	Instal	Iation Conditions 8-2
	8.1.1 8.1.2	Installation Environment8-2Installation Orientation8-2
8.2	Instal	Iation Procedure 8-3
	8.2.1	SGLG Servomotors (Coreless Models)
	8.2.2	SGLF Servomotors (Models with F-type Iron Cores)
	8.2.3	SGLT Servomotors
	8.2.4	(Models with T-type Iron Cores)
8.3	Servo	omotor Temperature Increase8-16

8.1.1 Installation Environment

8.1 Installation Conditions

The service life of a Servomotor will be shortened or unexpected problems will occur if the Servomotor is installed incorrectly or in an inappropriate location. Always observe the following installation instructions.

8.1.1 Installation Environment

Refer to the specifications for each type of Servomotor for the mechanical specifications, protective structure, and environmental conditions related to Servomotor installation.

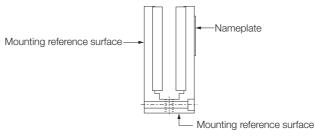
8.1.2 Installation Orientation

Installation Orientation	Figure	Precautions
Horizontal Direction		_
Hung		Install a mechanism on the equipment to pro- vide protection in case the Servomotor falls off.
Vertical Direction (Stroke in Vertical Direc- tion)		 Implement safety measures, such as attaching a counterbalance, so that the workpiece will not fall, e.g., when an alarm occurs, when overtravel occurs, or when the power supply is interrupted. Set the parameters so that the Servomotor will stop in the zero clamping state when overtravel occurs.

You can install the Servomotor in any orientation.

8.2.1 SGLG Servomotors (Coreless Models)

8.2 Installation Procedure

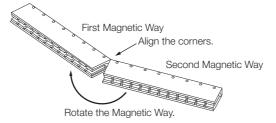

8.2.1 SGLG Servomotors (Coreless Models)

Mounting the Magnetic Way

	The SGLG Magnetic Ways consist of C-shaped steel plates with magnets facing each other attached between them. Be careful not to let foreign matter (magnetic material) enter between the magnets.
Note	Magnet

Use the following procedure.

1. Confirm the mounting reference surfaces of the Magnetic Way and place the Magnetic Way on one of the reference surfaces. There are two mounting references surfaces, as shown in the following figure. Select the appropriate reference surface for your system. Note: Be careful not to pinch your hands between the equipment and the Magnetic Way.


2. Press the Magnetic Way tightly against the equipment and secure it with screws.

Magnetic Way Model SGLGM-	Screw Nominal Size	Tightening Torque (N·cm)
30	M4	360 to 500
40	M5	720 to 1.010
60	IVIO	720101,010
90	M6	1,220 to 1,710

Note:Use socket head screws with a strength class of 10.9.

- **3.** Place the second Magnetic Way in line with and at least 30 mm away from the first Magnetic Way.
- 4. Align the corners of the connecting surfaces of the Magnetic Ways and then rotate the second Magnetic Way so that it connects to the first Magnetic Way.

5. Secure the second Magnetic Way with screws.

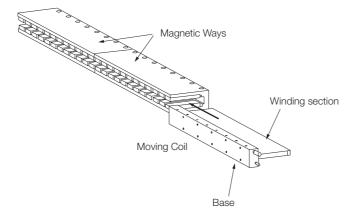
8

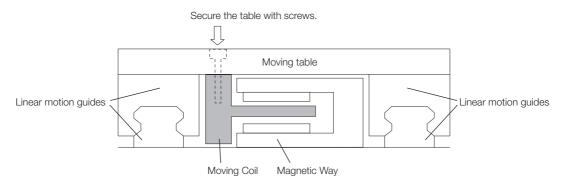
8-3

8.2.1 SGLG Servomotors (Coreless Models)

6. Mount the third and any other Magnetic Ways in the same way.

This concludes the procedure.


Mounting the Moving Coil


An SGLGW Moving Coil consists of an aluminum base and a winding section that is protected by plastic. Do not subject them to shock. Doing so may result in injury or equipment damage.

Use the following procedure.

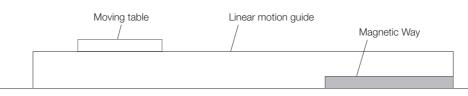
1. Insert the winding section between the magnets of the Magnetic Ways that you previously installed.

2. Attach the Moving Coil to the moving table that is supported by the linear motion guides.

3. Confirm that the gap, G, between the winding section of the Moving Coil and the magnets of the Magnetic Way are as given in the following table.

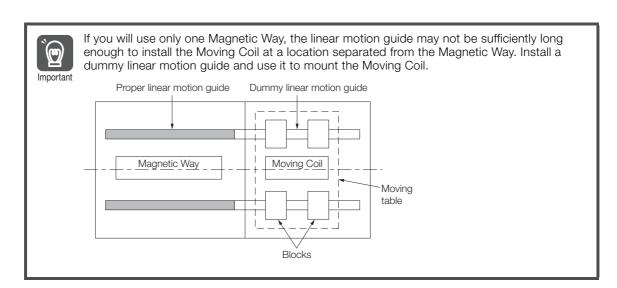
	Moving Coil			
Moving Coil	Model SGLGW-	Model SGLGW- H	Р	G
Magnetic Way	30A050	1 ± 0.3	1 ± 0.1	0.85 ± 0.3
	30A080	1 ± 0.3	1 ± 0.1	0.95 ± 0.3
G	40	1 ± 0.3	0 ± 0.1	0.8 ± 0.3
	60	1 ± 0.3	0 ± 0.1	0.8 ± 0.3
	90	2 ± 0.3	0.9 ± 0.1	1 ± 0.3

- **4.** Move the Moving Coil back and forth to the ends of the Magnetic Ways several times and confirm the following items.
 - That the Moving Coil does not come into contact with the Magnetic Ways
 - That there is no foreign matter (magnetic material) between the magnets


This concludes the procedure.

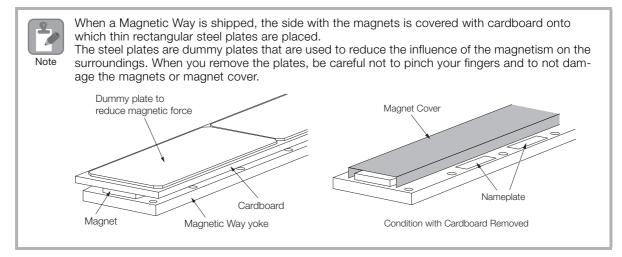
8.2.2 SGLF Servomotors (Models with F-type Iron Cores)

Outline


1. Mount one Magnetic Way.

2. Separate the moving table that is supported by the linear motion guides from the Magnetic Way and attach the Moving Coil to it.

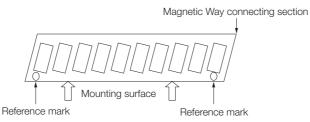
3. Place the Moving Coil on top of the Magnetic Way.



4. Attach the second and any other Magnetic Ways.

This concludes the procedure.

Mounting the First Magnetic Way


Use the following procedure.

The magnets in the Magnetic Way exert a very strong magnetic attraction. Be very careful when you use steel screws, wrenches, or other metal objects.

- 1. Remove the dummy plates to reduce magnetic force and the cardboard from the surface of the Magnetic Way.
- 2. Face the reference marks on the Magnetic Way (depressions of approx. 4 mm in diameter) toward the equipment and set down the Magnetic Way.

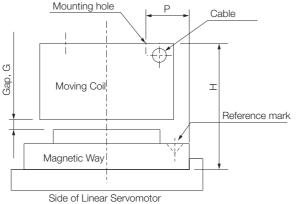
Note: Be careful not to pinch your hands between the equipment and the Magnetic Way.

3. Press the Magnetic Way tightly against the equipment and secure it with screws.

Magnetic Way Model	Screw Nominal Size	Tightening Torque (N∙cm)	Screw Head Height, K (mm)	Reference	Magnet
SGLFM-20	M4	360 to 500	4.2 max.		Magnetic Way yoke
SGLFM-35	1014	300 10 300	4.2 max.	Figure 1	Figure 1
SGLFM-50	M5	720 to 1,010	5.2 max.		1.90101
SGLFM-1Z	M6	1,220 to 1,710	6.7 max.		
SGLFM2-30	M4	360 to 500	4.2 max.		Magnet 🖌
SGLFM2-45	M5	720 to 1,010	5.2 max.	Figure 2	Magnetic
SGLFM2-90	M6	1,220 to 1,710	6.7 max.	-	Way yoke
SGLFM2-1D	M8	2,970 to 4,150	8.2 max.		Figure 2

Note:Use socket head screws with a strength class of 10.9.

This concludes the procedure.

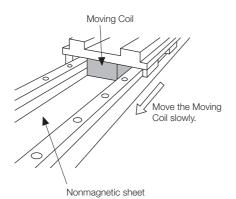

Mounting the Moving Coil

An SGLF Moving Coil consists of an iron core and a winding section that is protected by plastic. Do not subject them to shock. Doing so may result in injury or equipment damage.

Use the following procedure.

Note

- 1. On a line extending from the Magnetic Way that you previously mounted, attach the Moving Coil to the moving table supported by the linear motion guides.
- **2.** Confirm that the gap, G, between the Moving Coil and the Magnetic Way are as given in the following table.


(viewed from side of Moving Coil cable)

Moving Coil Model		Dimensions (mm)				
woving	woving con woder		Р	G (Gap)		
	20	45 ± 0.1	22 ± 0.2			
SGLFW-	35	45 ± 0.1	21 ± 0.2	1		
SGLFW-	50	58 ± 0.1	25.8 ± 0.2	(0.8)*		
	1Z	50 ± 0.1	27 ± 0.2			
	30A070		27.5			
SGLFW2-	30A120	40 ± 0.1	20	0.8		
	30A230		20			
	45		26	0.0		
	90	50 ± 0.1	30			
	1D		42.5			

*Dimensions in parentheses are for when the magnet cover is attached.

- **3.** Place a thin nonmagnetic sheet in the gap between the Moving Coil and Magnetic Way. The sheet must be approximately 0.5 mm thick, and we recommend using a plastic sheet.
- 4. Slowly move the Moving Coil toward the Magnetic Way and confirm that there are no noises, such as noise from contact between the Moving Coil and Magnetic Way.

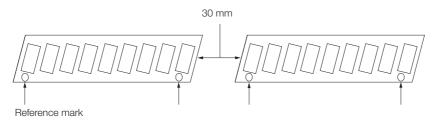
As the Moving Coil approaches the Magnetic Way, magnetic attraction will pull on the Moving Coil. Be careful not to pinch your fingers or tools.

Important

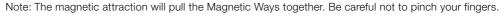
- 5. Move the Moving Coil back and forth to the ends of the Magnetic Ways several times and confirm the following items.
 - That the Moving Coil does not come into contact with the Magnetic Ways
 - That there is no foreign matter (magnetic material) between the magnets

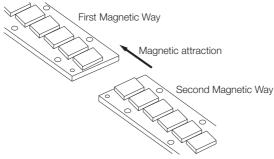
- 6. Remove the thin nonmagnetic sheet.
- 7. Use a nonmagnetic gap gauge to confirm that the gap between the Moving Coil and Magnetic Way is 1 \pm 0.3 mm^{*} at all locations. (We recommend a brass or stainless steel gauge.)

*If the magnet cover is in place, the gaps should be 0.8 $\pm 0.3~\text{mm}$


This concludes the procedure.

Mounting the Second and Any Other Magnetic Ways


Use the following procedure.

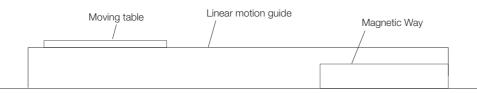

1. Place the second Magnetic Way in line with and at least 30 mm away from the first Magnetic Way.

Note: Face the Magnetic Ways in same orientation using the locations of the reference marks as a guide (depressions of approx. 4 mm in diameter).

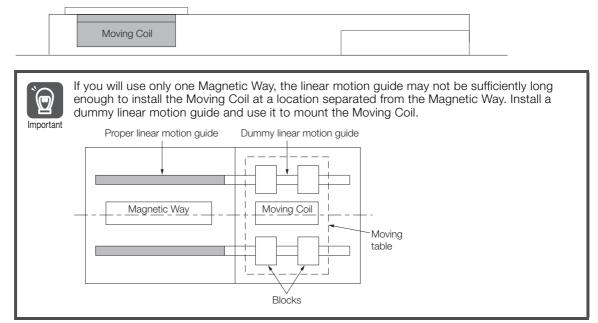
2. Hold down the Magnetic Way tightly, press the second Magnetic Way against the first Magnetic Way, and then secure the second Magnetic Way with screws.

3. Mount the third and any other Magnetic Ways using steps 1 and 2, above.

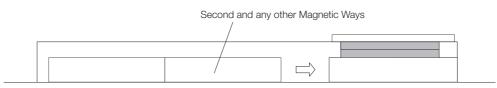
This concludes the procedure.


8.2.3 SGLT Servomotors (Models with T-type Iron Cores)

Outline

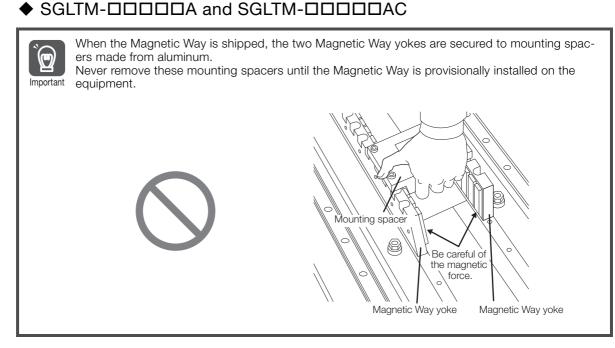

1. Mount one Magnetic Way.

To install the Moving Coil, you need a Magnetic Way that is longer than the Moving Coil. If one Magnetic Way is shorter than the Moving Coil, install two Magnetic Ways first and then install the Moving Coil.


2. Separate the moving table that is supported by the linear motion guides from the Magnetic Way and attach the Moving Coil to it.

3. Place the Moving Coil on top of the Magnetic Way.

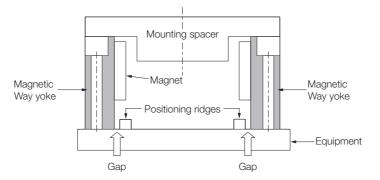
4. Attach the second and any other Magnetic Ways.

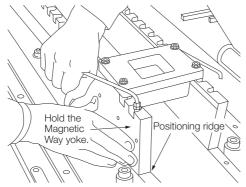


Mounting the First Magnetic Way

There are two types of Magnetic Ways: Magnetic Ways with mounting spacers, and Magnetic Ways with Magnetic Way yokes secured to bases.

- Magnetic Ways with mounting spacers: SGLTM-DDDDA and SGLTM-DDDDAC
- Magnetic Ways with Magnetic Way yokes secured to bases: SGLTM-DDDDAY


The installation procedure depends on the type of Magnetic Way.


Use the following procedure.

1. Without removing the mounting spacers, place the Magnetic Way on the positioning ridges on the equipment. There should be a gap between the positioning ridges on the equipment and the Magnetic Way yokes.

Note: Be careful not to damage the equipment and the Magnetic Way.

- 2. Place a mounting screw in one of the Magnetic Way yokes and secure it provisionally
- **3.** Hold the provisionally mounted Magnetic Way yoke tightly against the positioning ridges and secure it completely with screws.

Magnetic Way Model SGLTM-	Screw Nominal Size	Tightening Torque (N·cm)
20		
35	M6	1,220 to 1,710
50		
40	M8	2.970 to 4.150
80	IVIO	2,970 10 4,150

Note: These values are for the following conditions.

•Equipment materials: Iron

•Use of socket head screws with a strength class of 10.9

- 4. Remove the bolts from mounting spacers on the side of the Magnetic Way yoke that you mounted.
- **5.** Hold the other Magnetic Way yoke tightly against the positioning ridges and secure it completely with screws.

Note: Be careful not to let the Magnetic Way yoke slip in the direction of Moving Coil forward movement.

6. Remove the mounting spacers. If there are Magnetic Way mounting holes in the positions where the mounting spacers were attached, secure the yokes with screws in those mounting holes as well.

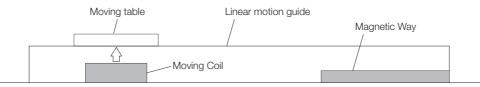
This concludes the procedure.

♦ SGLTM-□□□□□AY

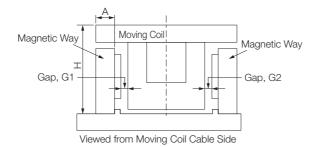
Use the following procedure.

- 1. Place the base to which the Magnetic Way yokes are attached in the specific location in the equipment.
- 2. Firmly secure the base to the equipment with bolts using the base mounting bolt holes.

This concludes the procedure.


Mounting the Moving Coil

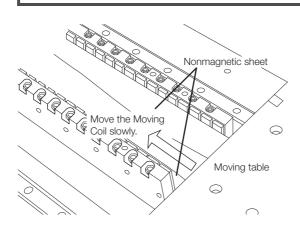
An SGLT Moving Coil consists of an aluminum or steel base, iron core, and a winding section that is protected by plastic. Do not subject them to shock. Doing so may result in injury or equipment damage.


Use the following procedure.

Note

1. On a line extending from the Magnetic Way that you previously mounted, attach the Moving Coil to the moving table supported by the linear motion guides.

2. Confirm that the gaps, G1 and G2, between the Moving Coil and the Magnetic Way are as given in the following table.



Moving Coil	Dimensions (mm)			
Model SGLTW-	Н	А	G1 , G2	
20	55 ± 0.3	15 ± 0.1	1 + 0 0	
35	70 ± 0.3	15 ± 0.1	1 ± 0.3 (0.8 ± 0.3) [*]	
50	85 ± 0.3	19.1 ± 0.1	(0.0 ± 0.0)	
40	83 ± 0.3	19.1 ± 0.1	1.4 ± 0.3	
80	120 ± 0.3	19.1 ± 0.1	(1.2)*	

*Dimensions in parentheses are for when the magnet cover is attached.

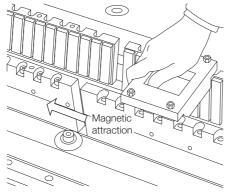
- **3.** Place a thin nonmagnetic sheet in the gap between the Moving Coil and Magnetic Way. The sheet must be approximately 0.5 mm thick, and we recommend using a plastic sheet.
- 4. Slowly move the Moving Coil attached to the moving table toward the Magnetic Way and confirm that there are no noises, such as noise from contact between the Moving Coil and Magnetic Way.

As the Moving Coil approaches the Magnetic Way, magnetic attraction will pull on the Moving Coil. Be careful not to pinch your fingers or tools.

- 5. Move the Moving Coil back and forth to the ends of the Magnetic Ways several times and confirm the following items.
 - That the Moving Coil does not come into contact with the Magnetic Ways
 - That there is no foreign matter (magnetic material) between the magnets
- 6. Remove the thin nonmagnetic sheet.
- Use a nonmagnetic gap gauge to confirm that the gap between the Moving Coil and Magnetic Way is 1 ±0.3 mm^{*} at all locations. (We recommend a brass or stainless steel gauge.)

*If the magnet cover is in place, the gaps should be 0.8 $\pm 0.3 \text{ mm}$

This concludes the procedure.


8.2.4 SGLC Servomotors (Cylinder Models)

Mounting the Second and Any Other Magnetic Ways

Use the following procedure.

- 1. Place the second Magnetic Way in line with and at least 30 mm away from the first Magnetic Way.
- **2.** Press the second Magnetic Way against the first Magnetic Way and secure it with screws.

Note: The magnetic attraction will pull the Magnetic Ways together. Be careful not to pinch your fingers.

3. Mount the third and any other of the Magnetic Ways using steps 1 and 2, above.

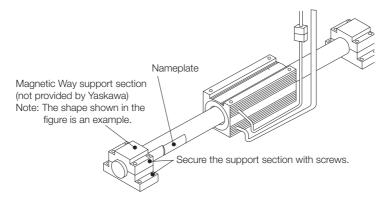
This concludes the procedure.

8.2.4 SGLC Servomotors (Cylinder Models)

Use the following procedure.

There are magnets built into the Magnetic Way that exert a strong magnetic attraction. Be careful not to pinch your fingers.

- 1. Mount the linear motion guides and Magnetic Way support section on the equipment.
- **2.** The Magnetic Way and Moving Coil will already be assembled when they are delivered. Remove the assembly from the packing box.



For safety, the Magnetic Way and Moving Coil assembly are mounted together on the equipment. Magnetic attraction will hold the Moving Coil and Magnetic Way together if you try to separate them. If separating them is unavoidable, be careful not to pinch your fingers.

3. Place both ends of the Magnetic Way in the Magnetic Way support sections and secure them with screws.


Note: Mount them so that the nameplate reads correctly.

8.2.4 SGLC Servomotors (Cylinder Models)

Magnetic Way Model SGLCM-	Total Length of Magnetic Way, L1 (mm)	Position of Support Section, L2 (mm)	Driving Range of Moving Coil, L3 (mm)	Length of Support Section, L4 (mm)
D16300A	300 ± 1.6	30	240	25
D16510A	510 ± 2.5	45	420	40
D16750A	750 ± 3.0	45	660	40
D20350A	350 ± 1.6	35	280	30
D20590A	590 ± 2.5	50	490	45
D20870A	870 ± 3.0	50	770	45
D25450A	450 ± 1.6	45	360	37
D25750A	750 ± 2.5	60	630	52
D251110A	1110 ± 3.0	60	990	52
D32600A	600 ± 1.6	60	480	52
D321020A	1020 ± 2.5	90	840	82
D321500A	1500 ± 3.0	90	1320	82

Reference side

4. After you mount the moving table to the linear motion guides, move the moving table to above the Moving Coil and secure it with screws using the tightening torque given in the following table.

Note: Route the cables carefully so that they are not caught in the Servomotor and secure them to the moving table.

Moving Coil Model SGLCW-	Screw Nominal Size	Tightening Torque (N·cm)
D16	M3	100
D20	M4	220
D25	M5	450
D32	M6	760

Note:Use austenite stainless steel socket heads screws with a strength class of A2-70 or the equivalent.

- **5.** Remove the plastic parts from between the Moving Coil and Magnetic Way. Note: The magnetic attraction will pull the Moving Coil and Magnetic Way together. Be careful not to pinch your fingers.
- **6.** Move the moving table several times back and forth along the entire stroke and confirm that nothing comes into contact with the Magnetic Way. (There is no recommended gap.)

This concludes the procedure.

8.3 Servomotor Temperature Increase

This section describes measures to suppress temperature increases in the Servomotor.

• When you install the Servomotor, observe the cooling conditions (heat sink sizes) that are given in the specifications for each type of Servomotor. The Servomotor generates heat when it operates. The heat generated by the Servomotor

radiates to the heat sink through the motor mounting surface. Therefore, if the surface area of the heat sink is too small, the temperature of the Servomotor may increase abnormally.

- If the operating environment makes it difficult to use a large heat sink, or if the ambient operating temperature or altitude given in the specifications is exceeded, implement the following measures.
 - Derate the Servomotor.
 - Contact your Yaskawa representative for information on derating.
 - Use external forced-air cooling for the Servomotor with a cooling fan or other means.

Do not place packing or any other insulating material between the Servomotor and heat sink. Doing so will cause the motor temperature to increase, affect resistance to noise, and may cause motor failure.

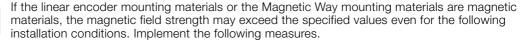
Connecting Linear Encoders

This chapter describes the conditions and procedures for mounting linear encoders.

9.1	Insta	llation Conditions for Linear Encoders 9-2
	9.1.1 9.1.2	SGLG Servomotors
	9.1.3	SGLT Servomotors
	9.1.4	SGLC Servomotors 9-3
9.2	Mour	nting Linear Encoders9-4
	9.2.1 9.2.2 9.2.3	Linear Encoders from Heidenhain Corporation 9-4 Linear Encoders from Renishaw PLC
	9.2.4	Corporation
9.3	Adjus	sting Linear Encoders

9.1.1 SGLG Servomotors

9.1


Installation Conditions for Linear Encoders

Observe the following installation conditions so that leakage flux from the Servomotor does not cause the linear encoder to malfunction.

Refer to the specifications for each type of linear encoder for the installation conditions outside a magnetic field.

Manufacturer	Model	External Magnetic Field Strength
	SR75/77	5 mT max.
Magnescale Co., Ltd.	SR85/87	5 III IIIdx.
	SL710/PL101	0.5 mT max.
Mitutoyo Corporation	ST78□A	3 mT max.

Mounting location guidelines for the linear encoders are given below.

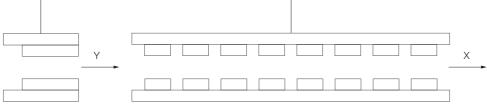
• Use a nonmagnetic material for the structure (SUS, aluminum, etc.).

• Install a magnetic material between the Magnetic Way and the linear encoder. If implementing the above measures is not possible, install the linear encoder in a location where the magnetic field strength is less than the specified value.

9.1.1 SGLG Servomotors

Note

Magnetic Way	Distance from Magnetic Way				
Model SGLGM-	X (mm)	+Y (mm)	-Y (mm)	Z (mm)	
30	35	35	10	50	
400000	45	40	10	55	
40000-M	65	60	10	75	
600000	65	55	10	75	
60000-M	85	75	10	100	
90	130	110	10	155	
-Y +Y			 		


9.1.2 SGLF Servomotors

9.1.2 SGLF Servomotors

Magnetic	c Way		Distance from Magnetic Way			
Mod	el	X (mm)	Y (mm)	+Z (mm)	-Z (mm)	
	20	85	55	85	10	
SGLFM-	35	100	65	110	10	
SGLFIVI-	50	125	80	135	10	
	1Z	165	95	170	10	
	30	85	50	95	10	
SGLFM2-	45	120	75	140	10	
SGLEWZ-	90	160	90	175	10	
	1D	175	90	200	10	
$+Z \uparrow +Z \uparrow +Z \uparrow -Z \downarrow -Z \downarrow$						

9.1.3 SGLT Servomotors

Magnetic Way	Distance from Magnetic Way			
Model SGLTM-	X (mm)	Y (mm)	Z (mm)	
20	70	50	20	
35000A	80	55	25	
35000H	85	60	25	
50	85	65	30	
40	110	80	35	
80	120	80	40	
Z		Z		

Х

9.1.4 SGLC Servomotors

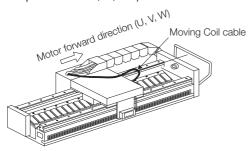
Magnetic Way Model SGLCM-	Distance from Magnetic Way	
	X (mm)	Y, Z (mm)
D16	80	60
D20	100	70
D25	125	95
D32	160	115

Z 🛔

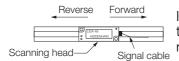
Υ

9.2.1 Linear Encoders from Heidenhain Corporation

9.2 Mounting Linear Encoders

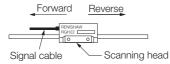

Attach the linear encoder so that the forward direction of the Servomotor is the count-up direction of the linear encoder.

If wiring or other restrictions prevent using the same directions for the forward direction and count-up direction, set parameter Pn080 to $n.\Box\Box1\Box$ (phase-B lead and phase sequence of U, V, W).



If the forward direction of the Servomotor and the count-up direction of the linear motor do not agree, the Servomotor may not operate or it may run out of control.

The forward direction for the motor is toward the side where the cable is connected. (The forward direction is the direction in which the Moving Coil moves when current flows in a phase sequence of U, V, W.)

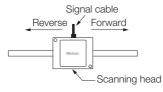


9.2.1 Linear Encoders from Heidenhain Corporation

If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the right.

9.2.2 Linear Encoders from Renishaw PLC

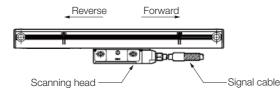
If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the left.


9.2.3 Absolute Linear Encoders from Mitutoyo Corporation

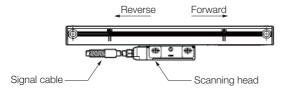
ST781A□, ST783A□, ST788A□, and ST789A□

Reverse Forward If the the constraints head signal cable right.

If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the right.


ST782A□ and ST784A□

If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the right.


9.2.4 Linear Encoders from Magnescale Co., Ltd.

SR75-DDDR, SR85-DDDR, SR77-DDDR, and SR87-DDDR


If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the right.

SR75-DDDL, SR85-DDDL, SR77-DDDL, and SR87-DDDL

If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the right.

SL700, SL710, SL720, and SL730

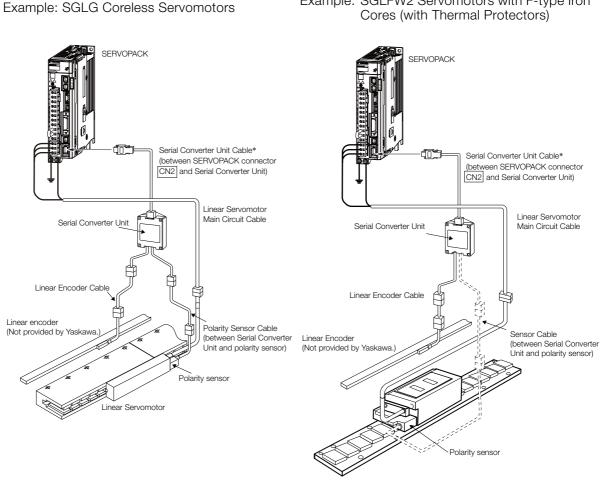
If the linear encoder is installed as shown in the diagram on the left, the count is incremented when the scanning head moves to the left.

9.3 Adjusting Linear Encoders

- Exposed Linear Encoders Always adjust the mounting of the scanning head. Consult the manufacturer of the linear encoder for the adjustment method.
- Sealed Linear Encoders No adjustment is necessary. However, you must observe the dimensional tolerances for mounting. Consult the manufacturer of the linear encoder for details.

Connections between Servomotors and SERVOPACKs

This chapter describes the cables that are used to connect the Servomotors and SERVOPACKs. It also provides information on peripheral devices and provides related precautions.


10.1	Selec	ting Cables10-2
	10.1.3 10.1.4 10.1.5	System Configurations10-2Servomotor Main Circuit Cables10-3Linear Encoder Cables10-5Serial Converter Unit Cables10-5Sensor Cables10-6Serial Converter Units10-7
10.2	Wiring	g Servomotors and SERVOPACKs 10-8
		Wiring Precautions10-8Wiring Procedure10-11

10.1.1 System Configurations

10.1 Selecting Cables

10.1.1 System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

Linear Servomotor

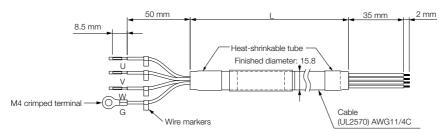
Example: SGLFW2 Servomotors with F-type Iron

- Note: 1.The above system configurations are for SGLG Coreless Servomotors or SGLFW2 Servomotors with F-type Iron Cores (with thermal protectors). Refer to the manual for the Linear Servomotor for configurations with other models.
 - 2. Refer to the *Σ*-7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32) for the following information.
 - Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
 - Order numbers and specifications for wiring materials

10.1.2 Servomotor Main Circuit Cables

		These Cables are avai	lable from Yaskawa Controls Co., Ltd.
Servomotor Model	Length	Order Number	Appearance
	1 m	JZSP-CLN11-01-E	
	3 m	JZSP-CLN11-03-E	SERVOPACK end Motor end
SGLGW-30A, -40A, -60A SGLFW-20A, -35A	5 m	JZSP-CLN11-05-E	
All SGLC models	10 m	JZSP-CLN11-10-E	
	15 m	JZSP-CLN11-15-E	
	20 m	JZSP-CLN11-20-E	
	1 m	JZSP-CLN21-01-E	
	3 m	JZSP-CLN21-03-E	SERVOPACK end Motor end
SGLGW-90A	5 m	JZSP-CLN21-05-E	
SGLFW-50A, -1ZA SGLTW-20A, -35A	10 m	JZSP-CLN21-10-E	
	15 m	JZSP-CLN21-15-E	
	20 m	JZSP-CLN21-20-E	_
	1 m	JZSP-CLN14-01-E	
SGLGW-30ADDDDDD	3 m	JZSP-CLN14-03-E	SERVOPACK end Motor end
-40A DDDDD D	5 m	JZSP-CLN14-05-E	
-60A□□□□□D SGLFW-□□A□□□□□D	10 m	JZSP-CLN14-10-E	
SGLTW-DDADDDDD	15 m	JZSP-CLN14-15-E	
	20 m	JZSP-CLN14-20-E	
	1 m	JZSP-CLN39-01-E	
	3 m	JZSP-CLN39-03-E	SERVOPACK end Motor end
SGLTW-40000B0	5 m	JZSP-CLN39-05-E	
-80000B0	10 m	JZSP-CLN39-10-E	
	15 m	JZSP-CLN39-15-E	
	20 m	JZSP-CLN39-20-E	_
	1 m	JZSP-CL2N703-01-E	
SGLFW2-30A070A	3 m	JZSP-CL2N703-03-E	SERVOPACK end Motor end
SGLFW2-30A070A□L SGLFW2-30A120A□	5 m	JZSP-CL2N703-05-E	
SGLFW2-30A120A□L	10 m	JZSP-CL2N703-10-E	
SGLFW2-30A230A□ SGLFW2-30A230A□L	15 m	JZSP-CL2N703-15-E	
JULI WZ-JUAZJUALL	20 m	JZSP-CL2N703-20-E	_
	1 m	JZSP-CL2N603-01-E	
SGLFW2-45A200A□	3 m	JZSP-CL2N603-03-E	SERVOPACK end Motor end
SGLFW2-45A200A□L	5 m	JZSP-CL2N603-05-E	
SGLFW2-45A380A	10 m	JZSP-CL2N603-10-E	
SGLFW2-45A380A□L	15 m	JZSP-CL2N603-15-E	
	20 m	JZSP-CL2N603-20-E	
	1 m	JZSP-CL2N503-01-E	
	3 m	JZSP-CL2N503-03-E	SERVOPACK end Motor end
SGLFW2-90A200A□ SGLFW2-90A380A□	5 m	JZSP-CL2N503-05-E	
SGLFW2-1DA380A	10 m	JZSP-CL2N503-10-E	
	15 m	JZSP-CL2N503-15-E	
	20 m	JZSP-CL2N503-20-E	

Note: Estimates are available for models other than those listed above (SGLFW2-90ADDDADL and SGLFW2-1DDDDADL).


*1. Connector from Tyco Electronics Japan G.K.

*2. Connector from Interconnectron GmbH

*3. A connector is not provided on the Linear Servomotor end. Obtain a connector according to your specifications. Refer to the next page for information on connectors.

10.1.2 Servomotor Main Circuit Cables

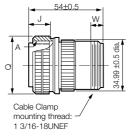
JZSP-CLN39-DD-E Cables

Wiring Specifications

SERVOPACK Leads			Servomotor Connector		
Wire Color	Signal		Signal	Pin	
Red	Phase U		Phase U	А	
White	Phase V		Phase V	В	
Blue	Phase W		Phase W	С	
Green/yellow	FG		FG	D	

◆ JZSP-CLN39 Cable Connectors

Applicable	Connector	Pli		
Servomotor	Provided with Servomotor	Straight	Right-angle	Cable Clamp
SGLTW-40 and -80	MS3102A22-22P	MS3106B22-22S or MS3106A22-22S	MS3108B22-22S	MS3057-12A


MS3106B22-2S: Straight Plug with Two-piece Shell

Unit: mm

55.57 max.					Offic: Hill
	Shell Size	Joint Thread A	Length of Joint J ±0.12	Joint Nut Outer Diameter Q +0 -0.38	Effective Thread Length W min.
	22	1 3/8-18UNEF	18.26	40.48	9.53
Cable Clamp mounting thread:					

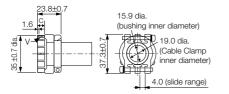
MS3106A22-2S: Straight Plug with Solid Shell

Unit: mm

1 3/16-18UNEF

Shell Size	Joint Thread A	Length of Joint J ±0.12	Joint Nut Outer Diameter Q ⁺⁰ _{-0.38}	Effective Thread Length W min.
 22	1 3/8-18UNEF	18.26	40.48	9.53

10-4


10.1.3 Linear Encoder Cables

MS3108B22-2S: Right-angle Plug with Two-piece Shell

76.98 max.					Unit: mm
	Shell Size	Joint Thread A	Length of Joint $J \pm 0.12$	Joint Nut Outer Diameter Q ⁺⁰ -0.38	Effective Thread Length W min.
	22	1 3/8-18UNEF	18.26	40.48	9.53
Cable Clamp Towns of the clamp Towns of the clamp Towns of the clamp Towns of the clamp to the clamp tottet to the clamp to the clamp t			·		

Dimensional Drawings: MS3057-12A Cable Clamp with Rubber Bushing

Unit: mm

Applicable Connector Shell Size	Effective Thread Length C	Mounting Thread V	Attached Bushing
20.22	10.3	1 3/16- 18UNEF	AN3420-12

10.1.3 Linear Encoder Cables

These Cables are available from Yaskawa Controls Co., Ltd.

Name	Servomotor Model	Length*	Order Number	Appearance	
		1 m	JZSP-CLL00-01-E		
For linear		3 m	JZSP-CLL00-03-E		
encoder from	- All Models	5 m	JZSP-CLL00-05-E		
Renishaw PLC		10 m	JZSP-CLL00-10-E	Serial Converter Linear encoder	
		15 m	JZSP-CLL00-15-E	Unit end L end	
		1 m	JZSP-CLL30-01-E		
For linear		•••	3 m	JZSP-CLL30-03-E	
encoder from Heidenhain		5 m	JZSP-CLL30-05-E		
Corporation		10 m	JZSP-CLL30-10-E		
		15 m	JZSP-CLL30-15-E		

* When using a JZDP-G00D-DDD-E Serial Converter Unit, do not exceed a cable length of 3 m.

10.1.4 Serial Converter Unit Cables

	ilable from Yaskawa Controls Co., Ltd.		
Servomotor Model	Length	Order Number	Appearance
	1 m	JZSP-CLP70-01-E	
	3 m	JZSP-CLP70-03-E	SERVOPACK Serial Converter
All Models	5 m	JZSP-CLP70-05-E	end L Unit end
All Models	10 m	JZSP-CLP70-10-E	
	15 m	JZSP-CLP70-15-E	
	20 m	JZSP-CLP70-20-E	

10.1.5 Sensor Cables

10.1.5 Sensor Cables

Servomotor Model Length		Order Number	Appearance
	1 m	JZSP-CLL10-01-E	Serial Converter Polarity sensor
SGLGW-DDA	3 m	JZSP-CLL10-03-E	Unit end L end
SGLFW-□□A SGLTW-□□A	5 m	JZSP-CLL10-05-E	
	10 m	JZSP-CLL10-10-E	
	15 m	JZSP-CLL10-15-E	
	1 m	JZSP-CL2L100-01-E	Serial Converter Polarity sensor
	3 m	JZSP-CL2L100-03-E	Unit end L end
SGLFW2-DDADDDASD (With Polarity Sensor)	5 m	JZSP-CL2L100-05-E	
(White clarity concer)	10 m	JZSP-CL2L100-10-E	
	15 m	JZSP-CL2L100-15-E	
	1 m	JZSP-CL2TH00-01-E	Serial Converter Temperature Sensor
	3 m	JZSP-CL2TH00-03-E	Serial Converter Temperature Sensor Unit end L end
SGLFW2-DDADDDATD (Without Polarity Sensor)	5 m	JZSP-CL2TH00-05-E	
	10 m	JZSP-CL2TH00-10-E	
	15 m	JZSP-CL2TH00-15-E	

10.1.6 Serial Converter Units

Selection Table (Model Designations)

Use the following tables to select the Serial Converter Unit.

		JZDP	- [<u> 100</u>						
						These Ca	ables are a	vailable from Yas	kawa Electric Co	rporation
	Serial Conver	ter Unit Mode	əl			Applicab	le Line	ear Servom	otor	
				Ð	Servomot	or Model	Code	Servomot	tor Model	Code
. .		Applicable	Polarity Sensor	Temperature Sensor	SGLGW -	30A050C	250	-	20A170A	011
Code	Appearance	Linear Encoder	ola Sen:	ben		30A080C	251		20A320A	012
		Enoodor		Tem		40A140C	252		20A460A	013
		From			(coreless	40A253C	253		35A170A	014
H003 J003		Heidenhain	None	None	models)	40A365C	254		35A320A	015
0000	(4L)(4)	Corp.		ļ	For Stan- dard-	60A140C	258	SGLTW-	35A460A	016
H005		From	None	None	force	60A253C	259	(models with T-	35A170H	105
J005		Renishaw PLC	None	None	Magnetic	60A365C	260	type iron	35A320H	106
		From			Way	90A200C	264	cores)	50A170H	108
H006 J006		Heidenhain	Yes	Yes		90A370C	265		50A320H	109
3000		Corp.				90A535C	266		40A400B	185
H008		From			SGLGW -	40A140C	255		40A600B	186
J008		Renishaw PLC	Yes	Yes	+ SGLGM -	40A253C	256		80A400B	187
		FLU			SGLGIM -	40A365C	257		80A600B	188
					(coreless	60A140C	261		D16A085AP	354
					models) For High-	60A253C	262		D16A115AP	373
					force Magnetic Way	60A365C	263		D16A145AP	356
						20A090A	017		D20A100AP	357
						20A120A	018	SGLC-	D20A135AP	358
					SGLFW-	35A120A	019	(cylinder models)	D20A170AP	359
					(models	35A230A	020	mouels)	D25A125AP	360
					with F- type iron	50A200B	181		D25A170AP	374
					cores)	50A380B	182		D25A215AP	362
						1ZA200B	183		D32A165AP	363
						1ZA380B	184		D32A225AP	364
						30A070A	628		D32A285AP	365
						30A120A	629			
					SGLFW2-	30A230A	630			
					(models with F-	45A200A	631			
					type iron	45A380A	632			
					cores)	90A200A	633			
						90A380A	634			
						1DA380A	649]		

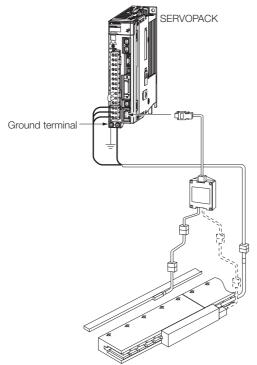
Note: Refer to the *S*-7-Series Peripheral Device Selection Manual (Manual No.: SIEP S800001 32) for details on the Serial Converter Units.

10.2.1 Wiring Precautions

10.2 Wiring Servomotors and SERVOPACKs

10.2.1 Wiring Precautions

• Do not connect the Servomotor directly to an industrial power supply. Doing so will destroy the Servomotor. You cannot operate a Servomotor without a SERVOPACK that is designed for it


General Precautions

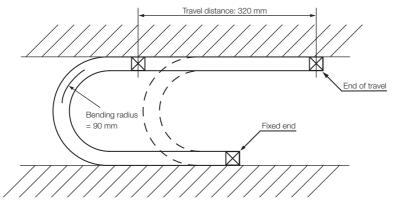
- Never perform any wiring work while the power supply is ON.
- Always connect the Servomotor Main Circuit Cable before you connect the Encoder Cable. If you connect the Encoder Cable first, the encoder may be damaged due to the difference in electrical potential from the FG.
- Never touch the connector pins on the Servomotor directly with your hands. Particularly the encoder may be damaged by static electricity.
- Separate the Servomotor Main Circuit Cable from the I/O Signal Cables and Encoder Cable by at least 30 cm.
- Do not connect magnetic contactors, reactors, or other devices on the cables that connect the SERVOPACK and Servomotor. Failure to observe this caution may result in malfunction or damage.
- Do not subject the cables to excessive bending stress or tension. The conductors in the Encoder Cable and Servomotor Main Circuit Cable are as thin as 0.2 mm² or 0.3 mm². Wire them so that they are not subjected to excessive stress.
- If you secure the cables with cable ties, protect the cables with cushioning material.
- If the cable will be bent repeatedly, e.g., if the Servomotor will move in the equipment, use Flexible Cables. If you do not use Flexible Cables, the cables may break.
- Before you connect the wires, make sure that there are no mistakes in the wiring.
- Always use the connectors specified by Yaskawa and insert them correctly.
- When you connect a connector, check it to make sure there is no foreign matter, such as metal clippings, inside.
- The connectors are made of resin. To prevent damage, do not apply any strong impact.
- Perform all wiring so that stress is not applied to the connectors. The connectors may break if they are subjected to stress.
- If you move the Servomotor while the cables are connected, always hold onto the main body of the Servomotor. If you lift the Servomotor by the cables when you move it, the connectors may be damaged or the cables may be broken.

10.2.1 Wiring Precautions

Grounding Precautions

The ground terminal on the SERVOPACK is used to ground the Servomotor.

Precautions for Standard Cables

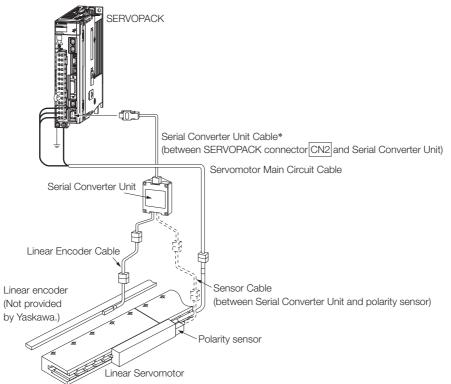

Do not use standard cables in applications that required a high degree of flexibility, such as twisting and turning, or in which the cables themselves must move. When you use Standard Cables, observe the recommended bending radius given in the following table and perform all wiring so that stress is not applied to the cables. Use the cables so that they are not repeatedly bent.

Cable Diameter	Recommended Bending Radius [R]
Less than 8 mm	15 mm min.
8 mm	20 mm min.
Over 8 mm	Cable diameter × 3 mm min.

10.2.1 Wiring Precautions

Precautions for Flexible Cables

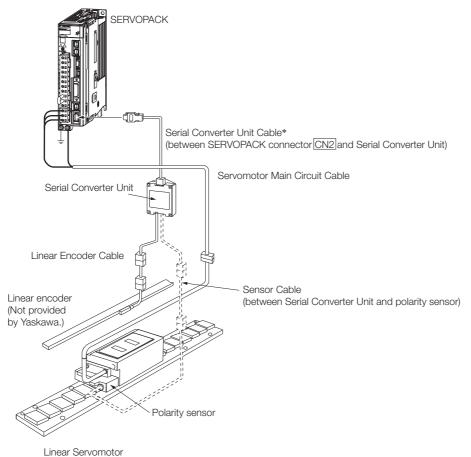
- The Flexible Cables have a service life of 10,000,000 operations minimum when used at the recommended bending radius of 90 mm or larger under the following test conditions. The service life of a Flexible Cable is reference data under special test conditions. The service life of a Flexible Cable greatly depends on the amount of mechanical shock, how the cable is attached, and how the cable is secured. Test Conditions
 - One end of the cable is repeatedly moved forward and backward for 320 mm using the test equipment shown in the following figure.
 - The lead wires are connected in parallel, and the number of cable return operations until a lead wire breaks are counted. One round trip is counted as one bend.


Note: The service life of a Flexible Cable indicates the number of bends while the lead wires are electrically charged for which no cracks or damage that affects the performance of the cable sheathing occur. Breaking of the shield wire is not considered.

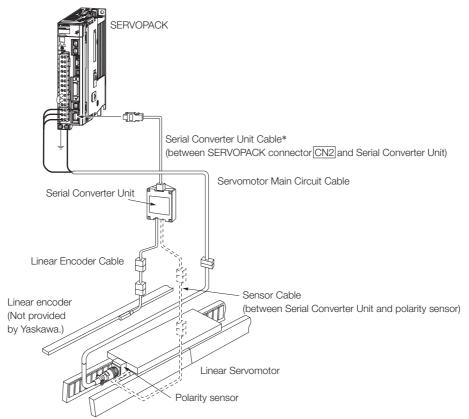
- Straighten out the Flexible Cable when you connect it. If the cable is connected while it is twisted, it will break faster. Check the indication on the cable surface to make sure that the cable is not twisted.
- Do not secure the portions of the Flexible Cable that move. Stress will accumulate at the point that is secured, and the cable will break faster. Secure the cable in as few locations as possible.
- If a Flexible Cable is too long, looseness will cause it to break faster. It the Flexible Cable is too short, stress at the points where it is secured will cause it to break faster. Adjust the cable length to the optimum value.
- Do not allow Flexible Cables to interfere with each other. Interference will restrict the motion of the cables, causing them to break faster. Separate the cables sufficiently, or provide partitions between them when wiring.

10.2.2 Wiring Procedure

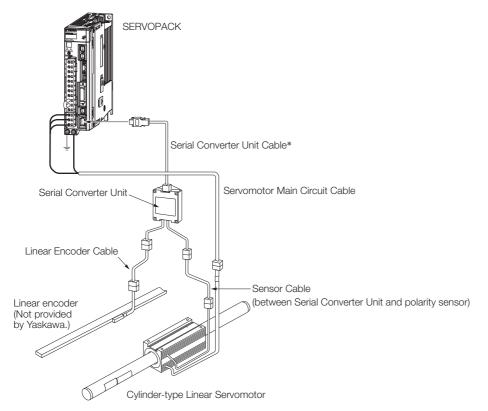
SGLG Servomotors


Refer to the following figures for wiring.

* You can connect directly to an absolute linear encoder.


SGLF Servomotors

Refer to the following figures for wiring.


SGLT Servomotors

Refer to the following figures for wiring.

SGLC Servomotors

Refer to the following figures for wiring.

Maintenance and Inspection

This chapter describes the maintenance, inspection, and disposal of a Servomotor.

(11)

11.1	Period	dic Inspections11-2
		Linear Servomotor Inspections 11-2 Linear Encoder Inspections 11-3
11.2	Dispo	sing of Servomotors

11.1.1 Linear Servomotor Inspections

11.1 Periodic Inspections

11.1.1 Linear Servomotor Inspections

The following table gives the periodic inspection items for a Servomotor. The inspection periods given in the table are guidelines. Determine the optimum inspection periods based on the application conditions and environment.

- All inspection and maintenance work must be performed by a trained technician. Failure to observe this caution may result in electric shock or injury.
- Contact your Yaskawa representative for help with failures, repairs, or part replacement.

Item			Inspection Period	Basic Inspection and Main- tenance Procedure	Remarks	
Daily Inspections	Check for vibration and noise.		Daily	Inspect by touching and by listening in a safe location.	There should be no more vibration or noise than normal.	
	Exterior	Moving Coil molded plastic		Confirm that there are no cracks, splitting, or chipping, and that there is no rubbing with the Magnetic Way.	If any abnormality is	
		Cables		Make sure that there are no scratches or splitting.	found, repair it or replace the part. Con- tact your Yaskawa rep- resentative.	
		Magnets	Daily	Make sure that there is no splitting or chipping.		
		Magnetic Way protective cover		Make sure that there is no deformation or rubbing with the Moving Coil.		
		Screws		Make sure that there are no loose screws.	Tighten any loose screws.	
		Dirt and foreign matter	As required by conditions	Clean off any dirt or foreign matter with a cloth or pres- surized air.	Use alcohol as a sol- vent.	

Continued on next page.

11.1.2 Linear Encoder Inspections

Continued from previous page.

	Continued from previous page					
	Item	Inspection Period	Basic Inspection and Main- tenance Procedure	Remarks		
Periodic Inspections	Gaps between Moving Coil and Magnetic Way	At least once a year	Disconnect the Servomotor from the SERVOPACK and confirm that there is no for- eign matter caught inside the Servomotor and that none of the gaps has increased in size since the Servomotor was first used.	_		
	Measure the insulation resis- tance.	At least once a year	Disconnect the Servomotor from the SERVOPACK and measure the insulation resis- tance at 500 V with an insula- tion resistance meter. (Measurement method: Mea- sure the resistance between phase U, V, or W on the Ser- vomotor's power line and FG.) The insulation is normal if the resistance is 10 MΩ or higher.	 If the resistance is less than 10 MΩ, contact your Yaskawa representative. Do not perform insulation resistance measurements or withstand voltage tests on the sensor. 		
	Overhaul	At least once every 5 years	Contact your Yaskawa representative.	Never attempt to disas- semble or clean a Ser- vomotor yourself.		

11.1.2 Linear Encoder Inspections

Consult the manufacturer of the linear encoder for maintenance and inspection information.

11.2 Disposing of Servomotors

When disposing of a Servomotor, treat it as ordinary industrial waste.

However, local ordinances and national laws must be observed. Implement all labeling and warnings as a final product as required.

 When you dispose of a Linear Servomotor, heat the Magnetic Way to 300°C or higher for one hour to demagnetize it.

There is a risk of injury from the strong magnetic attraction.

Revision History

The revision dates and numbers of the revised manuals are given at the bottom of the back cover.

MANUAL NO. SIEP S800001 37A

Published in Japan May 2014 14-5

Date of Date of publication original publication

Date of Publication	Rev. No.	Section	Revised Content
May 2014	—	-	First edition

Σ -7-Series AC Servo Drive Linear Servomotor **Product Manual**

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama 358-8555, Japan

Phone 81-4-2962-5151 Fax 81-4-2962-6138 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.yaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brasil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstraβe 185, Eschborn 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg. 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (CHINA) CO., LTD.

12F, Carlton Bld., No.21 HuangHe Road, HuangPu District, Shanghai 200003, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.yaskawa.com.cn

VASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2014 YASKAWA ELECTRIC CORPORATION. All rights reserved

MANUAL NO. SIEP S800001 37A Published in Japan May 2014 14-5 13-6-9 Original instructions